Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: William E. Phillips x
Clear All Modify Search
Free access

William E. Knoop and Phillip F. Colbaugh

An urban educational program titled “Don't Bag It” having as its' goal the reduction of the solid waste flow to landfills, was initiated in Ft. Worth the spring of 1988. The program, using media methods and volunteer demonstrators, teaches homeowners how to manage lawns without bagging grass clippings.

Very favorable program results have encouraged the spread of the program to 25 other Texas cities and the distribution of the program across the country:

Free access

Andrew S. Doran, Donald H. Les, Michael L. Moody and William E. Phillips

Free access

Donald H. Les, Michael L. Moody, Andrew S. Doran and William E. Phillips

A synthetic F1 water-lily hybrid has been obtained for the first time using parental species originating from different subgenera of Nymphaea. The cross was accomplished using Nymphaea gigantea Hook. `Andre Leu' (subgenus Anecphya Casp.) as the maternal parent and a white-flowered variant of Nymphaea colorata Peter (subgenus Brachyceras Casp.) as the paternal parent. Morphologically, the hybrid possesses some characteristics of both parents, some intermediate features, and some unique traits. The cross was confirmed using DNA sequencing and molecular cloning techniques to compare biparentally inherited nuclear genetic markers in the parents and hybrid plant. Each parent possessed distinct alleles that were found to combine in the hybrid. Maternally inherited chloroplast DNA sequences confirmed N. gigantea as the maternal parent of the cross.

Free access

Gary L. McDaniel, William E. Klingeman, Willard T. Witte and Phillip C. Flanagan

One-half (18 g·ha-1 a.i.) and three-fourths (27 g·ha-1 a.i.) rates of halosulfuron (Manage®, MON 12051) were combined with adjuvants and evaluated for effectiveness in controlling purple nutsedge (Cyperus rotundus L.) and for phytotoxic responses exhibited by two kinds of container-grown ornamental plants. Adjuvants included X-77®, Scoil®, Sun-It II®, Action “99”®, and Agri-Dex®. By 8 weeks after treatment (WAT), halosulfuron combined with X-77®, Agri-Dex®, or Action “99”® at the lower halosulfuron rate provided <90% purple nutsedge suppression. In contrast, Sun-It II® provided 100% control when combined with the higher halosulfuron rate. Nutsedge control persisted into the following growing season and halosulfuron combined with either Scoil® or Sun-It II® provided >97% suppression of nutsedge tuber production. Growth of liriope [Liriope muscari (Decne.) Bailey `Big Blue'] was not inhibited by Scoil® or Sun-It II® adjuvants in combination with the low rate of halosulfuron. However, regardless of the rate of halosulfuron or adjuvant used, initial foliar chlorosis was observed in both daylily (Hemerocallis sp. L. `Stella d'Oro') and liriope. All liriope receiving halosulfuron with X-77®, Scoil®, or Sun-It II® adjuvants recovered normal foliage by 8 WAT. By contrast, at 8 WAT some daylily still maintained a degree of foliar discoloration. In addition to chlorosis, all treatments reduced flower number in daylilies. The number of flower scapes produced by liriope was not affected by halosulfuron when in combination with either Sun-It II® or Scoil®. The high rate of halosulfuron combined with X-77® or Action “99”® improved control of purple nutsedge. However, this rate inhibited growth of both species, daylily flower numbers, and scape numbers of liriope, regardless of adjuvant. Chemical names used: halosulfuron (Manage®, MON 12051, methyl 5-{[(4,6-dimethyl-2-pyrimidinyl) amino] carbonyl-aminosulfonyl}-3-chloro-1-methyl-1-H-pyrozole-4-carboxylate); proprietary blends of 100% methylated seed oil (Scoil® and Sun-It II®); proprietary blend of 99% polyalkyleneoxide modified heptamethyl trisiloxane and nonionic surfactants (Action “99”®); alkylarylpolyoxyethylene, alkylpolyoxyethelene, fatty acids, glycols, dimethylpolysiloxane, and isopropanol (X-77®); proprietary blend of 83% paraffin-based petroleum oil, with 17% polyoxyethylate polyol fatty acid ester and polyol fatty ester as nonionic surfactants (Agri-Dex®)

Full access

Rebecca M. Koepke-Hill, Gregory R. Armel, William E. Klingeman, Mark A. Halcomb, Jose J. Vargas and Phillip C. Flanagan

Field and greenhouse studies were conducted to determine if two indole-3-acetic acid herbicide mimics, aminopyralid and aminocyclopyrachlor-methyl, applied at 70, 140, and 280 g·ha−1 postemergence (POST) would control mugwort (Artemisia vulgaris) in an abandoned nursery. These were compared with the commercial standards picloram at 280 g·ha−1 a.i. and clopyralid at 280 g·ha−1. In the field study, picloram and clopyralid controlled mugwort 75% and 31% by 365 days after treatment (DAT), respectively. In contrast, aminopyralid and aminocyclopyrachlor-methyl applied at 140 g·ha−1 controlled mugwort over 90% by 365 DAT. In the greenhouse study, aminopyralid and aminocyclopyrachlor-methyl applied at 140 g·ha−1 controlled mugwort 92% and 96% respectively, although aminopyralid at 70 g·ha−1 provided better visual control (94%) in comparison with aminocyclopyrachlor-methyl (79%) at 70 g·ha−1. Regardless, following shoot growth removal at 30 DAT, mugwort failed to regrow by 60 DAT following exposures to all rates of both herbicides. On the basis of these studies, aminopyralid and aminocyclopyrachlor-methyl have potential to provide excellent control of mugwort compared with the current standards clopyralid and picloram.

Full access

Joseph E. Beeler, Gregory R. Armel, James T. Brosnan, Jose J. Vargas, William E. Klingeman, Rebecca M. Koepke-Hill, Gary E. Bates, Dean A. Kopsell and Phillip C. Flanagan

Trumpetcreeper (Campsis radicans) is a native, perennial, weedy vine of pastures, row crops, fence rows, and right-of-ways throughout most of the eastern United States. Field and greenhouse studies were conducted in 2008 and 2009 near Newport, TN, and in Knoxville, TN, to evaluate aminocyclopyrachlor-methyl and aminopyralid alone and in mixtures with 2,4-D and diflufenzopyr for selective trumpetcreeper control when applied postemergence in an abandoned nursery. These treatments were compared with commercial standards of dicamba and a prepackaged mixture of triclopyr plus 2,4-D. In the field, aminocyclopyrachlor-methyl alone controlled trumpetcreeper 77% to 93%, while aminopyralid alone only controlled trumpetcreeper 0% to 20% by 12 months after treatment (MAT). The addition of diflufenzopyr or 2,4-D to aminocyclopyrachlor-methyl did not improve trumpetcreeper control in the field; however, the addition of 2,4-D to aminopyralid improved control of trumpetcreeper from 50% to 58%. All aminocyclopyrachlor-methyl treatments controlled trumpetcreeper greater than or equal to dicamba and the prepackaged mixture of triclopyr plus 2,4-D. In the greenhouse, aminocyclopyrachlor and aminocyclopyrachlor-methyl applied at 8.75 to 35 g·ha−1 controlled trumpetcreeper 58% to 72% by 1 MAT. When both herbicides were applied at 70 g·ha−1, aminocyclopyrachlor controlled trumpetcreeper 64%, while aminocyclopyrachlor-methyl controlled trumpetcreeper 99%, similar to dicamba.

Free access

Deborah Dean, Phillip A. Wadl, Xinwang Wang, William E. Klingeman, Bonnie H. Ownley, Timothy A. Rinehart, Brian E. Scheffler and Robert N. Trigiano

Viburnum dilatatum is a popular and economically important ornamental shrub. The wide range of desirable horticultural traits, paired with a propensity for seedlings to become invasive, has created interest in the genetics and breeding of this species. To investigate the genetic diversity of V. dilatatum, microsatellite loci were identified from a GT-enriched genomic library constructed from V. dilatatum ‘Asian Beauty’. Eleven microsatellite loci have been characterized on a group of 16 different related V. dilatatum cultivars and hybrids. Two to 12 alleles were identified per locus, and the polymorphism information content (PIC) values ranged from 0.36 to 0.87. Expected heterozygosity (He) ranged from 0.48 to 0.88 and observed heterozygosity (Ho) ranged from 0 to 0.73. This set of molecular markers also exhibited expected transferability between various V. dilatatum cultivars and two hybrids with V. japonicum. As a consequence, these markers will aid in breeding for new cultivar development, assist with early detection and screening of plants that have escaped cultivation, and are expected to help in refining the phylogenetic relationship of V. dilatatum to other species and genera within the Adoxaceae.

Free access

Deborah Dean, Phillip A. Wadl, Denita Hadziabdic, William E. Klingeman, Bonnie H. Ownley, Timothy A. Rinehart, Adam J. Dattilo, Brian Scheffler and Robert N. Trigiano

Viburnum rufidulum is a deciduous tree native to North America that has four-season appeal, which provides commercial horticultural value. In addition, the plant has unique and attractive red pubescence on leaf buds and petioles, common to no other Viburnum species. As habitat undergoes development and subsequent fragmentation of native plant populations, it is important to have baseline genetic information for this species. Little is known about the genetic diversity within populations of V. rufidulum. In this study, seven microsatellite loci were used to measure genetic diversity, population structure, and gene flow of 235 V. rufidulum trees collected from 17 locations in Kentucky and Tennessee. The genotype data were used to infer population genetic structure using the program InStruct and to construct an unweighted pair group method with arithmetic mean dendrogram. A single population was indicated by the program InStruct and the dendrogram clustered the locations into two groups; however, little bootstrap support was evident. Observed and expected heterozygosity were 0.49 and 0.78, respectively. Low-to-moderate genetic differentiation (F ST = 0.06) with evidence of gene flow (Nm = 4.82) was observed among 17 populations of V. rufidulum. A significant level of genetic diversity was evident among V. rufidulum populations with most of the genetic variations among individual trees (86.37%) rather than among populations (13.63%), and a Mantel test revealed significant correlation between genetic and geographical distance (r = 0.091, P = 0.001). The microsatellites developed herein provide an initial assessment or a baseline of genetic diversity for V. rufidulum in a limited area of the southeastern region of the United States. The markers are a genetic resource and can be of assistance in breeding programs, germplasm assessment, and future studies of V. rufidulum populations, as this is the first study to provide genetic diversity data for this native species.

Full access

Matthew A. Cutulle, Gregory R. Armel, James T. Brosnan, Dean A. Kopsell, William E. Klingeman, Phillip C. Flanagan, Gregory K. Breeden, Jose J. Vargas, Rebecca Koepke-Hill and Mark A. Halcomb

Selective weed control in ornamental plant production can be difficult as many herbicides can cause unacceptable injury. Research was conducted to evaluate the tolerance of several ornamental species to applications of p-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides for the control of problematic weeds in ornamental production. Mestotrione (0.09, 0.18, and 0.36 lb/acre), tembotrione (0.08, 0.16, and 0.32 lb/acre), and topramezone (0.016, 0.032, and 0.064 lb/acre) were applied alone postemergence (POST) in comparison with the photosystem II-inhibiting herbicide, bentazon (0.5 lb/acre). All herbicide treatments, with the exception of the two highest rates of tembotrione, caused less than 8% injury to ‘Noble Upright’ japanese holly (Ilex crenata) and ‘Compactus’ burning bush (Euonymus alatus). Similarly, no herbicide treatment caused greater than 12% injury to ‘Girard’s Rose’ azalea (Azalea). Conversely, all herbicides injured flowering dogwood (Cornus florida) 10% to 23%. Mesotrione- and tembotrione-injured ‘Radrazz’ rose (Rosa) 18% to 55%, compared with only 5% to 18% with topramezone. ‘Siloam June Bug’ daylily (Hemerocallis) injury with topramezone and tembotrione was less than 10%. Topramezone was the only herbicide evaluated that provided at least 93% control of redroot pigweed (Amaranthus retroflexus) with all application rates by 4 weeks after treatment (WAT). Redroot pigweed was controlled 67% to 100% with mesotrione and tembotrione by 4 WAT, but this activity was variable among application rates. Spotted spurge (Chamaesyce maculata) was only adequately controlled by mesotrione applications at 0.18 and 0.36 lb/acre, whereas chamberbitter (Phyllanthus urinaria) was not controlled sufficiently with any herbicide evaluated in these studies. Yellow nutsedge (Cyperus esculentus) was suppressed 72% to 87% with mesotrione applications at 0.18 lb/acre or higher and with bentazon at 0.5 lb/acre by 4 WAT. All other herbicide treatments provided less than 58% control of yellow nutsedge. In the second study, ‘Patriot’ hosta (Hosta), ‘Green Sheen’ pachysandra (Pachysandra terminalis), autumn fern (Dryopteris erythrosora), ‘Little Princess’ spirea (Spiraea japonica), ‘Green Giant’ arborvitae (Thuja plicata), and ‘Rosea’ weigela (Weigela florida) displayed no response to topramezone when applied at 0.024 and 0.095 lb/acre. Since 10 ornamental species in our studies exhibited less than 10% herbicidal response with all rates of at least one HPPD-inhibiting herbicide then it is possible that these herbicides may provide selective POST weed control in ornamental production systems.