Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: William B. Thompson x
Seedling plants from the three parents `Resisto', `Southern Delight', and `L86-33', along with three pot sizes (3.8-, 10.2-, and 17.7-cm diameters) were evaluated. Root characteristics evaluated in both the greenhouse and field included: number, length, diameter, length diameter ratio (L:D), size, skin color, flesh color, internal cambium ring (color and width), and the number of lateral and secondary roots. After greenhouse evaluation, plants were transplanted to the field. The 3.8-cm pot did not produce enough roots in the greenhouse for evaluation. In the 10.2-cm pots, greenhouse root number was correlated with the yield, root size, and L:D, and negatively correlated with skin color in the field. Flesh color was correlated with smoothness and flesh color in the field. In the 17.8-cm pots, flesh color, smoothness, and skin color in the greenhouse were correlated with the same character in the field. Skin color was also negatively correlated with smoothness in the field. No differences were found in field yield due to pot size. Results from one season showed that the 10.2-cm pot was effective for greenhouse selection of flesh color, skin color, and smoothness in seedling sweetpotato plants.
A research gap exists on the effects of irrigation, transplant (nonrooted stem cuttings) size, and planting depth on sweetpotato (Ipomoea batatas) plant survival and storage root yield. Field studies were conducted in 2012 and 2013 to determine the effects of preplant irrigation, planting depth, and transplant size on sweetpotato plant stand, storage root number, and yield. Treatments included four transplant sizes (3.7, 6.3, 8.5, and 10.7 inches), two planting depths (2 and 6 inches), and preplant irrigation or nonirrigation. Overall, plant stand, storage root number, and yield were greater when transplants of size ≥6.3 inches were planted 6 inches deep as compared with transplants planted 2 inches deep. The use of preplant irrigation had an overall positive impact on plant stand, storage root number, and yield under dry soil conditions. When moisture was readily available, neither plant stand nor storage root numbers were affected by the application of irrigation as observed in 2013. However, sweetpotato yields were greater during both years when preplant irrigation was used. Irrigation during the root initiation phase of plant establishment or extended periods of no rainfall would be beneficial for improving plant stands and yields.
Studies were conducted in North Carolina to determine the effect of holding durations (HDs) [0, 1, 3, 5, and 7 days before planting (DBP)] of ‘Covington’ sweetpotato (Ipomoea batatas) transplants on plant stand and storage root numbers and yield in production fields. In a second field study, the effect of preplant irrigation (PI) treatments (PI and nonirrigation) were evaluated along with the transplant HD on plant stand, storage root numbers, and yield. Transplants held for 7 DBP did not survive as well as the other treatments (lower plant stands) and had lower no. 1, marketable, and total storage root numbers and yields than other holding treatments. HD of 1 or 3 DBP resulted in higher plant stands, and no. 1, marketable, and total numbers of storage roots and yields than holding for 0, 5, or 7 DBP. This study affirms the importance of soil moisture at and shortly after planting for transplant survival and yield. Holding transplants for 1–3 DBP can improve stand establishment and yields when dry conditions occur either before or soon after planting. However, holding transplants for 7 DBP can result in reduced plant stands and yields when stress/dry conditions occur soon after planting.