Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: William A. Retzlaff x
Clear All Modify Search

Uniform nursery stock of five almond cultivars (Prunus dulcis Mill., cv Nonpareil, Mission, Carmel, Butte, and Sonora) propagated on peach (P. domestica L. Batsch.) rootstock were planted in open-top fumigation chambers on 19 April 1989 at the University of California's Kearney Ag Center located in the San Joaquin Valley of California. The trees were exposed to three atmospheric ozone partial pressures (charcoal filtered air, ambient air, or ambient air+ozone) from 1 June to 2 November 1989. The mean 12-h (0800-2000 h) ozone partial pressure measured in the open-top chambers during the experimental period averaged 0.038, 0.060, and 0.112 μPa Pa-1 ozone in the charcoal filtered, ambient, and ambient+ ozone treatments, respectively. Leaf net CO2 assimilation and cross-sectional area growth of Nonpareil trees were reduced by increasing atmospheric ozone partial pressures, but Mission trees were unaffected. Foliage of Nonpareil almond abscised prematurely in the ambient and ambient+ozone treatments. The susceptibility of the Butte, Carmel, and Sonora almond cultivars to ozone was intermediate between the Nonpareil and Mission cultivars.

Free access

We investigated the effects of three seasonal atmospheric ozone (0,) concentrations on fruit quality, internal breakdown, weight loss, cuticle structure, and ripening characteristics of plum fruit from 3-year-old `Casselman' trees in the 1991 season. Trees were exposed to 12-hour daily mean O3 concentrations of 0.034 [charcoal-filtered air (CFA)], 0.050 [ambient air (AA)], or 0.094 [ambient plus O3 (AA+O)] μl·liter-1 from bloom to leaf-fall (1 Apr. to31 Oct. 1991). Fruit quality and internal breakdown incidence measured at harvest and after 2, 4, and 6 weeks of storage at 0C were not affected by any of the O3 treatments. Following an ethylene (C2H4) preconditioning treatment, the rate of fruit softening, C2H4 production, and CO, evolution was higher for plums harvested from the AA + O than from those grown in CFA. Weight loss of fruit from the AA + O exceeded that of fruit from CFA and AA. Anatomical studies of mature plums indicated differences in wax deposition and cuticle thickness between fruit grown in AA + O, AA, and CFA. Differences in gas permeability, therefore, may explain the difference in the ripening pattern of `Casselman' plum fruit grown in high atmospheric O3 partial pressures.

Free access