Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Wilfred R. Jester x
Sweetpotato varieties differ in their ability to efficiently use N. This study was conducted to determine if time of N application affected root yield and quality in the variety Beauregard. Nitrogen sidedress single-application treatments were applied at 10, 21, 28, and 35 days after transplanting. Two split application treatments were evaluated: l) 44.8 kg N/ha were applied 10 days after transplanting and 22.4 kg N/ha applied 21 days after transplanting and 2) 33.6 kg N/ha were applied 21 and 35 days after transplanting. The N source was calcium nitrate (15.5–0–0) and totaled 67.3 kg N/ha for all treatments. Plots were four rows and 6 m long, and treatments were randomized in five blocks. Harvested roots were sorted according to U.S. Dept. of Agriculture grading standards and weighed. Highest yields of U.S. no. 1 grade roots were obtained by applying N 21 to 35 days after transplanting. Total marketable yield was highest when application was made at 28 or 35 days after transplanting. Root length, at the 10% level of significance, was shorter when one vs. two N applications were applied. Using one N application compared with two N applications seems to be beneficial as shown by increased total marketable yields and yield of U.S. no. 1 roots and reduced root length.
Demand for triploid watermelons has outpaced the demand for diploid watermelons in the United States in recent years. The size of most triploid watermelons sold in U.S. markets is from 6 to 9 kg. Recently, a new produce item, seedless watermelons weighing about 1.8 to 3.6 kg, have been introduced and created excitement in the produce industry. Several vegetable seed companies have developed proprietary miniwatermelon hybrids. Syngenta Seeds and Seminis Vegetable Seeds have received the most publicity, with the PureHeart and Bambino brands being featured in the 15 June 2003 New York Times. The 2003 season was the first year that cultigens (cultivars and advanced lines) were generally available. At least four trials were conducted in the southeastern United States to evaluate yields and quality of mini-watermelons; Bradenton, Fla., Ediston, S.C., Charleston, S.C., and Kinston, N.C. Cultural practices and the number of cultigens varied among locations (9 to 17). Fruit less than 3.6 kg that yielded best in all locations were `Petite Perfection' (Syngenta) and RWT 8149 (Syngenta). Other cultigens that yielded well in at least one location were; `Precious Petite' (Syngenta), `Vanessa' (Sunseeds), ZG 8905 (Zeraim Gedera), SR 8103 WM (Sunseeds), SW 8002 (Southwestern), and HA 5130 (Hazera). Rind thickness varied from 6 to 25 mm and soluble solids ranged from 10 to 13%, depending on location and cultigen. New cultivars will be made available in 2004. Key characteristics that seem important to overall success in the market of the triploid miniwatermelon is consistent quality. This includes high yields of uniform sized fruit from about 1.6 to 3.8 kg; high soluble sugars (11% to 13%); and fruit with bright red, crisp flesh with a thin rind that endures shipping.
The goal of this study was to evaluate miniwatermelon (Citrullus lanatus) cultivars/experimental hybrids (cultigens) for yield, quality, and adaptability in various growing environments. Eighteen cultigens were evaluated in field locations at southern Florida (Bradenton), northern Florida (Quincy), central South Carolina (Blackville), coastal South Carolina (Charleston), and eastern North Carolina (Kinston). Fruit at each site were harvested when watermelons in several plots were at market maturity. Fruit were categorized as marketable if they weighed between 3.0 and 9.0 lb. Fruit were categorized by size as follows: ≤3.0 lb (cull), 3.1–5.0 lb, 5.1–7.0 lb, 7.1–9.0 lb, and ≥9.1 lb (cull). Fruit were graded according to U.S. Department of Agriculture (USDA) grading standards for all watermelon fruit. We found that eight cultigens (Meilhart, Petite Perfection, Precious Petite, Little Deuce Coupe, RWT 8162, Master, Bibo, and Vanessa) were consistently among the top yielding and four cultigens (HA 5138, HA 5117, Petite Treat, and Valdoria) were consistently among the lowest yielding. These had a consistent yield response regardless of location. Within the small marketable melon category (3.1–5.0 lb), ‘Bibo’, ‘Precious Petite’, and RWT 8162 produced a uniform fruit over the five locations. Within the medium marketable melon category (5.1–7.0 lb) ‘Meilhart’, ‘Little Deuce Coupe’, HA 5109, ‘Xite’, ‘Mohican’, SR 8101, and ‘Vanessa’ produced uniform fruit size over the five locations. HA 5117, HA 5109, ‘Extazy’, ‘Mohican’, ‘Petite Treat’, and ‘Valdoria’ produced more fruit in the larger category. Those cultigens that produced melons that were consistently >9.0 lb were HA 5138, HA 5117, Bobbie, and Valdoria. The larger USDA marketable class (7.1–9.0 lb) was considered too large to be in the miniwatermelon market. We found five cultigens that provided consistently high soluble solids readings at each location: Master, RWT 8162, Betsy, Bobbie, and Bibo. We sampled only five fruit at each location for internal quality, and found dark seeds in all of the cultigens in at least one of the locations. Rind thickness and fruit shape did not appear to be influenced by test site location.
The goals of these studies were to determine how miniwatermelon (Citrullus lanatus) cultivars differed and responded to plant in-row spacing in terms of percentage of marketable fruit and yields, and if plant spacing impacted internal fruit quality. Three genetically diverse triploid miniwatermelon cultivars (Mohican, Petite Perfection, and Xite) were selected. These cultivars were evaluated in field locations at northern Florida (Quincy), central South Carolina (Blackville), coastal South Carolina (Charleston), and eastern North Carolina (Kinston) at five within-row distances. Within-row distance included 9, 12, 15, 18, and 21 inches. All plots were15 ft long with row middles 9 ft apart. Fruit were categorized as marketable if they weighed between 3.1 and 9.0 lb per fruit. Within this range further categories were divided as follows: ≤3.0 lb (cull), 3.1 to 5.0 lb (small), 5.1 to 7.0 lb (average), 7.1 to 9.0 lb (large), and ≥9.1 lb (cull). There was a cultivar by location interaction, suggesting that the three cultivars responded differently at each of the four locations. ‘Petite Perfection’ was among the highest yielding at all locations except Quincy, where it was the lowest yielding cultivar. As with total yields, the percentage of marketable fruit was similar for some cultivars across locations. Cultivar Petite Perfection produced the highest percentage of marketable fruit at three of the four locations. The exception was the Quincy site where ‘Xite’ had the highest percentage of marketable fruit. Within-row plant distances and populations affected total marketable yield, both for fruit weight and number per plant, regardless of cultivar and location. As the plant population increased from eight plants per plot (21-inch in-row spacing) to 12 plants per plot (15-inch in-row spacing), total marketable miniwatermelon fruit yields increased in total fruit number as well as total weight. There was a cultivar by location interaction for the percentage of soluble solids and the rind thickness measurements, suggesting that some cultivars responded differently at each of the four locations. Quality effects were more apparent with ‘Mohican’ and ‘Xite’, as they were more responsive to location than ‘Petite Perfection’.