Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Whitney S. Miller x
Clear All Modify Search

Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment selection, replicate number and size, and the opportunity for true repeated measures. This work sought to establish the limits to which image acquisition and analysis may replace standard, destructive measures of fresh lettuce biomass. Outdoor, high tunnel, and greenhouse plantings of three cultivars of red and green leaf lettuce (Lactuca sativa) were direct-seeded in raised beds and plastic trays in spring, summer, and fall seasons in 2009–10 in Wooster, OH. Overhead images (624 in total) were captured at specific time points after seeding using handheld and tripod-mounted commercial digital cameras. Fresh weight and leaf area of destructive plant samples within the digital images were also collected. Images were analyzed using user-defined settings in WinCAM software (Regent Instruments, Quebec, QC, Canada). A reference grid captured within each image allowed for the calculation of crop canopy cover (percent of two-dimensional image area covered by leaves). Calculations of canopy cover require differentiating leaves and rooting medium by color. The rooting medium was dark in color, and differentiating red leaves against this background was less reliable than differentiating green leaves from background. Nevertheless, in samples collected in the greenhouse 7 to 16 days after sowing (DAS), significant correlations (r) of 0.85 to 0.96 (P < 0.05) were observed between measures of canopy cover calculated by image analysis software and leaf area obtained with a leaf area meter on harvested plant material. In outdoor and high tunnel plots 16 to 30 DAS, correlation coefficients between direct measures of plant biomass and WinCAM estimates of canopy cover were 0.71 to 0.95 (P < 0.0001). We conclude that digital image analysis may be useful in real-time, nondestructive assessments of early stage leaf lettuce canopy development, particularly when the leaf area index (LAI) is less than one and settings are dominated by green leaves.

Full access

Three years of mechanical harvesting (shake and catch) trials with two freestanding apple (Malus domestica Borkh.) cultivars on a semidwarf rootstock (M.7a) and two training systems (central leader and open center) yielded 64% to 77% overall harvesting efficiency. Mechanically harvested `Bisbee Delicious' apples averaged 70% Extra Fancy and 10% Fancy grade, while two `Golden Delicious' strains (`Smoothee' and `Frazier Goldspur') averaged 40% Extra Fancy and 13% Fancy grade fruit. Mechanically harvesting fresh-market-quality apples from semidwarf freestanding trees was difficult and its potential limited. Cumulative yield of open-center trees was less than that of central-leader trees during the 3 years (sixth through eighth leaf) of our study. `Golden Delicious' trees generally produced higher yields than `Delicious' trees.

Free access