Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Wesley C. Randall x
Clear All Modify Search

Annual bedding plant seedlings or plugs are considered high quality when they are compact, fully rooted transplants with a large stem caliper and high root dry mass. Greenhouses in northern latitudes rely on supplemental lighting (SL) from high-pressure sodium lamps (HPS) during winter months to achieve high-quality, finished plugs. Light-emitting diodes (LEDs) offer higher energy efficiencies, a long operating life, and precise waveband specificity that can eliminate wavebands not considered useful. Seedlings of Antirrhinum, Catharanthus, Celosia, Impatiens, Pelargonium, Petunia, Tagetes, Salvia, and Viola were grown at 21 °C under a 16-hour photoperiod of ambient solar light and SL of 100 μmol·m−2·s–1 from either HPS lamps or LED arrays with varying proportions (%) of red:blue light (100:0, 85:15, or 70:30). Height of Catharanthus, Celosia, Impatiens, Petunia, Tagetes, Salvia, and Viola was 31%, 29%, 31%, 55%, 20%, 9%, and 35% shorter, respectively, for seedlings grown under the 85:15 red:blue LEDs compared with those grown under HPS lamps. Additionally, stem caliper of Antirrhinum, Pelargonium, and Tagetes was 16%, 8%, and 13% larger, respectively, for seedlings grown under the 85:15 red:blue LEDs compared with seedlings grown under HPS lamps. The quality index (QI), a quantitative measurement of quality, was similar for Antirrhinum, Catharanthus, Impatiens, Pelargonium, and Tagetes grown under LEDs and HPS lamps. However, it was significantly higher for Petunia, Salvia, and Viola under 85:15, 70:30, and 100:0 red:blue LEDs than under HPS lamps, respectively. These results indicate that seedling quality for the majority of the species tested under SL from LEDs providing both red and blue light was similar or higher than those grown under HPS lamps.

Free access

To produce uniform, compact, and high-quality annual bedding plant seedlings in late winter through early spring, growers in northern latitudes must use supplemental lighting (SL) to achieve a photosynthetic daily light integral (DLI) of 10 to 12 mol·m−2·d−1. Alternatively, new lighting technologies may be used for sole-source photosynthetic lighting (SSL) to grow seedlings in an indoor high-density multilayer controlled environment. The objective of this study was to compare seedlings grown under low greenhouse ambient light (AL) to those grown under SL or SSL with a similar DLI. On hypocotyl emergence, seedlings of vinca (Catharanthus roseus), impatiens (Impatiens walleriana), geranium (Pelargonium ×hortorum), petunia (Petunia ×hybrida), and French marigold (Tagetes patula) were placed in a greenhouse under AL or AL plus SL delivering a photosynthetic photon flux (PPF) of 70 µmol·m−2·s–1 for 16 hours, or under multilayer SSL delivering a PPF of 185 µmol·m−2·s–1 for 16 hours in a walk-in growth chamber. Supplemental lighting consisted of high-pressure sodium (HPS) lamps or high-intensity light-emitting diode (LED) arrays with a red:blue light ratio (400–700 nm; %) of 87:13, and SSL consisted of LED arrays providing a red:blue light ratio (%) of 87:13 or 70:30. Root and shoot dry mass, stem diameter, relative chlorophyll content, and the quality index (a quantitative measurement of quality) of most species were generally greater under SSL and SL than under AL. In addition, height of geranium, petunia, and marigold was 5% to 26%, 62% to 79%, and 7% to 19% shorter, respectively, for seedlings grown under SSL compared with those under AL and SL. With the exception of impatiens, time to flower was similar or hastened for all species grown under SL or SSL compared with AL. Seedlings grown under SSL were of similar or greater quality compared with those under SL; indicating that LED SSL could be used as an alternative to traditional greenhouse seedling production.

Free access