Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Wendy L. Zellner x
Silicon (Si) absorption is highly variable among different plant types; however, few studies have examined variations among different cultivars within a single species. In this study, 10 different tomato cultivars, including determinants and indeterminants as well as hybrids and heirlooms, were hydroponically grown in the presence or absence of Si to determine the absorption and distribution of the nutrients in roots, stems, petioles, and leaves. A total elemental analysis revealed that Si concentrations significantly increased with Si treatment, and that root concentrations were significantly higher than those in leaves. Although a few species showed differences in carbon, nitrogen, and calcium concentrations in roots and leaves with Si treatment, many of the macronutrients and micronutrients were unaffected. These data suggest that tomato plants absorb Si within the macronutrient range and restrict its movement from roots to shoots.
The objective of this research was to determine the suitability of a steel slag product for supplying micronutrients to container-grown floriculture crops. Geranium (Pelargonium ×hortorum L.H. Bailey ‘Maverick Red’) and tomato (Solanum lycopersicon L. ‘Megabite’) were grown in 11.4-cm containers with a substrate composed of 85 peatmoss : 15 perlite (v/v). A group of containers referred to as the commercial control (C-control) were amended with 4.8 kg·m−3 dolomitic lime and fertilized with a commercial complete fertilizer providing macro and micronutrients (Jack’s 20N–4.4P–16.6K–0.15Mg–0.02B–0.01Cu–0.1Fe–0.05Mn–0.01Mo–0.05Zn) at a concentration of 100 mg·L−1 nitrogen (N). Another group of containers, referred to as the micronutrient control (M-control), were amended with a commercial granular micronutrient package at 0.9 kg·m−3 and dolomitic lime at 4.8 kg·m−3. The M-controls were fertilized with 7.1 mm N (100 mg·L−1 N) with ammonium nitrate and 2 mm potassium phosphate. A final group of containers were amended with 1.2, 2.4, or 4.8 kg·m−3 of steel slag and fertilized with 3.6 mm ammonium nitrate and 2 mm potassium phosphate. Both control groups resulted in vigorous and saleable plants by the conclusion of the experiment. In both crops, chlorophyll levels, root ratings, and shoot dry mass were lower in all steel slag–amended plants compared with either control groups. In geranium, foliar nutrient concentrations suggest Cu and Zn were limiting whereas B and Zn were limiting in tomato. Based on the results of this research, steel slag does not provide sufficient micronutrients, most notably B, Cu, and Zn, to be the sole source of micronutrient fertilization in container-grown crops.
Dolomitic lime (DL) is the primary liming agent used for increasing pH in peatmoss-based substrates. Steel slag (SS) is a byproduct of the steel manufacturing industry that has been used to elevate field soil pH. The objective of this research was to determine the pH response of a peatmoss-based greenhouse substrate to varying rates of DL or SS. Two experiments were conducted with an 85 peatmoss : 15 perlite substrate. In the first experiment, the substrate was amended with 0, 2.4, 4.8, or 7.1 kg·m−3 of either DL or SS. Half of the containers remained fallow and the other half were potted with a single sunflower (Helianthus annuus L. ‘Pacino Gold’). In the second experiment, fallow containers were only used with the substrate amended with 0, 2.4, 4.8, 9.5, or 14.2 kg·m−3 DL or SS. Sunflower were measured for relative foliar chlorophyll content, shoot mass, root ratings, and foliar nutrient concentrations. Substrate electrical conductivity (EC) and pH were measured weekly using the pour-through procedure. All sunflower plants grew vigorously, although nonamended controls had less shoot dry weight than those amended with DL or SS. There were minor differences in foliar concentration of N, Ca, Mg, and Mn; however, these differences did not adversely affect plant growth. Summarizing across both experiments, EC was affected by treatment and time, although all substrates had EC readings within the range recommended for floriculture crop production (1.0–4.6 mS⋅cm−1). Substrate pH differed slightly in Expt. 1 between fallow and planted containers. Substrate pH increased exponentially with increasing rates of either DL or SS. Maximum pH in fallow DL and SS amended substrates was 6.57 and 6.93, respectively, in Expt. 1 and 6.85 and 7.67, respectively, in Expt. 2. The SS used in this experiment resulted in a greater pH response than DL with higher application rates. SS is a viable material for raising pH of soilless substrates.