Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Wen-Ju Yang x
Clear All Modify Search

Yellow pitaya, Selenicereus megalanthus (Schum. ex. Vaupel) Moran, is a potential new fruit in Taiwan. It sprouts mostly in winter and flowers in late spring and fall. In this study, an average of 60% shoots within canopies flowered. Shoots sprouted in the current winter flowered in fall and produced winter fruits, and shoots sprouted earlier than the current winter flowered in late spring and produced summer fruits. Floral buds on most shoots appeared at the distal end. The weight, pulp percentage, and total soluble solids of winter fruits were significantly higher than those of summer fruits. The number of black seeds was positively correlated with pulp weight (R 2 = 0.87). The total soluble solids in the core region of winter fruits reached 22.7 °Brix, higher than that in other regions. Future efforts to improve yellow pitaya production in Taiwan include increasing winter fruit production by enhancing growth of the current year's new shoots through proper canopy management and increasing the size of summer fruit by artificial pollination, fruit thinning, and other means.

Free access

Off-season flowering in red pitaya (Hylocereus sp.), a long-day plant, can be achieved using night-breaking (NB) treatment. Among the stages of bud development, stage 0 referred to induced but not yet differentiate any bracteole and stage 3 was the stage right before emerging floral buds and the bracteole differentiation was completed. Unlike floral bud emergence, bracteole differentiation was independent of the daylength and strongly influenced by the environmental temperature. The buds of higher stages were more effective in response to NB treatment and more sensitive to chilling injury (CI). Consequently, off-season flowers in autumn and winter trials were derived mainly from stage 2 and 3 buds and from stage 0 and 1 buds, respectively. In southern Taiwan, low night temperature between 10 Jan. and 7 Feb. 2011 may be the major factor, which delay bud development in off-season production. Therefore, we conducted a heating experiment in winter off-season production to proof our hypothesis and concluded that NB treatment should be applied along with night temperature elevation or after mid-February when the minimum night temperature is increasing.

Free access

Red pitaya (Hylocereus sp.), which flowers between May and October and sprouts between November and May in Taiwan, has been confirmed to be a long-day plant. The areoles on the old shoots may be induced to flower after the March equinox naturally, and the floral bud formation occurs in two to three waves from May to October. We conducted experiments on photoperiodic regulation of floral bud formation from June to Dec. 2009 and tested the feasibility of off-season production in 2011. Shortening summer daylength to 8 h inhibited the areoles at the distal end of the shoots to develop into floral buds and promoted sprouting at the proximal ends of the shoots. Night-breaking treatment between the September equinox and the winter solstice led to floral bud formation. The critical daylength seemed to be ≈12 h, and night-breaking treatment would be applicable between the September and the next March equinoxes to produce off-season crops. The duration of night-breaking required for flower differentiation was longer in the cooler than in the warmer season. Four weeks of night-breaking treatment was sufficient to promote flowering in late fall (mid-October to mid-November), but 3 months were required to generate similar result in the winter and early spring (January to March) in southern Taiwan.

Free access