Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Weimin Deng x
  • Refine by Access: All x
Clear All Modify Search
Free access

Weimin Deng and Randolph M. Beaudry

A simple packaging system was developed to simultaneously measure volatile production by plant organs and the permeability of the packaging film to those volatiles. In this system, apple (Malus domestica Borkk cv Golden Delicious) was packaged in low-density polyethylene (LDPE) bag and placed into a glass jar with a low air flow. The package and jar head spaces were sampled for aroma volatile analysis by gas chromatograph. Analysis was by gas chromatography/mass spectrometry. This system allowed at least 10 volatile compounds and their permeabilities to be measured. This system permits volatile production to be measured for products in the package so the product need not be removed from its storage environment. This may be a useful method for determining the dynamic relationship between flavor volatile synthesis and package atmosphere for packaged produce.

Free access

Weimin Deng and Randolph M. Beaudry

Sampling factors that could affect gas chromatograph (GC) response for volatile analysis such as syringe pumping time, injection volume, needle length, temperature, and the type of volatile were investigated. Capillary GC column segments (steel and glass) were installed in gas-tight syringes and used as needles for volatile analysis. Standard stainless-steel needles were also used. Hexylacetate, ethyl-2-methylbutyrate, 6-methyl-5-hepten-2-one, and butanol standard were measured. The number of pumps required to maximize GC response for each needle–volatile combination was determined. Maximal GC response for hexylacetate using standard stainless steel, capillary glass, and capillary steel needles required 10, 20 and 30 pumps, respectively. However, for butanol measurement, the optimal syringe pump number was 5 to 10 for all needle types. The use of a capillary needle resulted in an increase in GC response in the range of 3- to 15-fold relative to a standard stainless steel needle. Injection volume affected GC response in a needle-and volatile-dependent manner. In no case did injection volume vs. GC response extrapolate through origin. The GC response for capillary column needles increased as temperature decreased. Capillary column needles may be useful tools for analysis of volatiles that readily partition into the column coating.

Free access

Randolph M. Beaudry, Jun Song, and Weimin Deng

Apple scald (peel browning) is hypothesized to involve a chilling disorder. Numerous studies have linked chloroplast fluorescence changes with chilling injury before symptom development. Therefore, chloroplast fluorescence was used for the prediction of scald in apples. `Red Delicious' apple fruit were harvested at three maturities and stored at 1 to 2C. They were removed from storage weekly and placed at ambient temperature (22C). Chloroplast fluorescence was measured at 0, 3, and 7 days after removal. A significant decline in quantum yield response (Fv/Fm), which indicates a reduction of chloroplast function, was recorded after 30 days in first-harvest fruit and 40 to 50 days in the second- and third-harvest fruit. The decline in Fv/Fm preceded scald development by ≈30 days in first-harvest fruit and 20 to 30 days in second- and third-harvest fruit. The data suggest that fluorescence changes and scald development may be related physiologically. Fruit firmness and other fruit ripening phenomena were also measured and their relationship to the fluorescence and scald development were investigated. The results indicated that the chloroplast fluorescence may be used as a predictive tool for scald development in stored apple fruit.

Free access

Weimin Deng, Jun Song, and Randolph M. Beaudry

The effect of polymers used in packaging on the aroma of the packaged product has been little explored. Using a package-in-a-jar system, we are able to simultaneously measure volatile production by plant organ (Malus domestica Borkh. cv. Golden Delicious) and the permeability of the packaging film to those volatiles. In this system, apple fruit were placed into a glass container or sealed in a low-density polyethylene(LDPE) package and subsequently placed into a glass container. Air or a modified atmosphere was slowly passed through the glass containers such that the O2 level in the package was similar to that in containers with no package. The package and jar head spaces were sampled for CO2, O2, ethylene, and aroma volatile analysis by gas chromatography/mass spectrometry. The effect of temperature, atmosphere and film presence to some major volatile compounds was determined. When storage temperature increased from 0°C to 22°C the production rate of hexylacetate and 2-methyl butylacetate increased 11.27- and 17.15-fold, respectively. At 0°C, as O2 decreased in concentration from 10% to 5% (v/v), hexylacetate and butylacetate declined significantly; however, 2-methyl butylacetate was not affected. This can be taken to indicate the production of 2-methyl butanol for 2-methyl butylacetate formation is not as O2 concentration dependent as straight-chain alcohols. At the same O2 concentration, non-packaged fruit evolved greater amounts of all volatiles than packaged fruit. The flux of α-farnesene, hexylacetate and 2-methyl butylacetate was 26.6-, 1.7-, and 1.4-fold higher, respectively, for fruit in glass container. The sorption of α-farnesene and some other volatiles into LDPE film is evidently considerable, altering the aroma profile of packaged produce relative to a flow-through system.

Free access

Jun Song, Weimin Deng, Randolph M. Beaudry, and Paul R. Armstrong

Trends in chlorophyll fluorescence for `Starking Delicious', `Golden Delicious' and `Law Rome' apple (Malus ×domestica Borkh.) fruit were examined during the harvest season, during refrigerated-air (RA) storage at 0 °C, following RA and controlled-atmosphere (CA) storage, and during a poststorage holding period at 22 °C. Fluorescence parameters of minimal fluorescence (Fo), maximal fluorescence (Fm), and quantum yield [(Fm-Fo)/Fm, otherwise denoted as Fv/Fm] were measured. During `Starking Delicious' fruit maturation and ripening, Fv/Fm declined with time, with the rate of decline increasing after the ethylene climacteric. During RA storage, all fluorescence parameters remained constant for approximately 2 weeks, then steadily declined with time for `Starking Delicious' fruit. Superficial scald was detected after Fv/Fm had declined from an initial value of 0.78 to ≈0.7. Fv/Fm was consistently higher for CA-stored fruits than for RA-stored fruits. We were able to resegregate combined populations of “high-quality” (CA) and “low-quality” (RA) `Law Rome' fruit with 75% accuracy using a threshold Fv/Fm value of 0.685, with only 5% RA-stored fruit incorrectly identified as being of high quality. During a poststorage holding period, Fo, Fm, and Fv/Fm correlated well with firmness for `Starking Delicious', but not for `Golden Delicious' fruit, which were already soft. Fo and Fm were linearly correlated with hue angle for 'Golden Delicious' fruit, decreasing as yellowness increased. The accuracy, speed of assessment, and light-based nature of fluorescence suggests that it may have some practical use as a criterion to assist in sorting apple or other chlorophyll-containing fruit or vegetables on commercial packing lines.

Free access

Jun Song, Rujida Leepipattanawit, Weimin Deng, and Randolph M. Beaudry

Hexanal vapor inhibited hyphae growth of Penicillium expansum and Botrytis cinerea on potato dextrose agar (PDA) and on apple (Malus domestica Borkh.) slices. After 48 hours exposure to 4.1 μmol·L-1 (100 ppm) hexanal, the hyphae growth of both fungi was about 50% that of untreated controls. At a concentration of 10.3 μmol·L-1 (250 ppm), neither fungus grew during the treatment period, however, some growth of both fungi occurred 120 hours after treatment. At concentrations of hexanal vapor of 18.6 μmol·L-1 (450 ppm) or more, the growth of both fungi ceased and the organisms were apparently killed, neither showing regrowth when moved to air. When fungi were allowed to germinate and grow for 48 hours in hexanal-free air, a subsequent 48-hour exposure to 10.3 μmol·L-1 hexanal slowed colony growth relative to controls for several days and a 48-hour exposure to 18.6 μmol·L-1 stopped growth completely. Concentrations of hexanal that inhibited fungal growth on PDA also retarded decay lesion development on `Golden Delicious' and on `Jonagold' apple slices. Hexanal was actively converted to aroma volatiles in `Jonagold' and `Golden Delicious' apple slices, with hexanol and hexylacetate production strongly enhanced after 20 to 30 hours treatment. A small amount of butylhexanoate and hexylhexanoate production was also noted. Within 16 hours after treatment, no hexanal could be detected emanating from treated fruit. Since hexanal was metabolized to aroma-related volatiles by the fruit slices, the possibility of hexanal being an essentially residue-less antifungal agent seems likely. The possibility of developing a system for treating apple slices with hexanal in modified-atmosphere packages was also examined. The permeability of low-density polyethylene (LDPE) film to hexanal and hexylacetate was, respectively, about 500- and 1000-fold higher than LDPE permeability to O2. The permeability of both compounds increased exponentially with temperature, with hexanal permeability increased 6-fold while hexylacetate increased only 2.5-fold between 0 and 30 °C.