Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Wei-Ling Chen x
Clear All Modify Search

Asparagus is a potential greenhouse crop, and its production is considerably affected by temperature and light, especially in the summer season. This study investigated the effects of the application of near-infrared (NIR)-reflective diffusion coating on a simple plastic greenhouse on microclimatic conditions, plant response, spear yield, and quality of the asparagus plant in central Taiwan. The results showed that NIR-reflective diffusion coating reduced the mean air temperature inside the greenhouse by 0.3 to 0.9 °C and leaf temperature by 2.3, 2.4, and 2.4 °C at a canopy height of 50, 100, and 50 cm, respectively. Although the accumulated daily light integral (DLI) transmitted in the coated greenhouse exhibited an 18.9% reduction compared with a 16.8% reduction in the noncoated greenhouse, a more uniform spatial light distribution was noted. Therefore, photosynthesis improved in the middle and bottom canopy, and plants could maintain a higher transpiration rate, thus resulting in atmospheric cooling. The average spear yield increased by 31.4% in summer and by 10.1% during the following harvest with a lower crude fiber (CF) content and higher Ca as well as Mg contents. In addition, the number of newly emerged shoots increased by 48.8% after the removal of the mother stalk under coating. NIR-reflective diffusion coating can be used as an energy-saving method for enhancing cooling and improving light use efficiency, thus increasing asparagus production in a greenhouse in summer.

Open Access

The production of melons (Cucumis melo L.) in greenhouses relies on pollination. Extreme temperature and insufficient light reduce not only flower visitation by pollinators but also pollen viability, resulting in inefficient pollination. In this study, we investigated the effects of forchlorfenuron [(N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU)] on the fruit setting and growth of oriental melons (C. melo L. var. makuwa Makino). The primary objective was to devise a new strategy for the management of oriental melons. Treatment with 5 mg·L−1 CPPU a day before flowering (T1), on the day of flowering (T2), and a day after flowering (T3) increased the fruit setting rate (by 20.1% to 30%) in melons subjected to artificial pollination (AP) or no pollination (NP) compared with the rate in those subjected to only artificial pollination without CPPU (CK). CPPU treatment induced unfertilized seeds; in addition, a tendency toward parthenocarpy was noted. The highest fruit setting rate (∼95%) was noted in plants subjected to the following treatments: AP+T1 and NP+T3. The rates of abnormal fruit formation decreased from 45.2% of CK group to 9.4% in plants subjected to AP+T1 and to 19.4% in those subjected to NP+T3. Elevated exogenous concentrations of CPPU markedly increased fruit weight. Plants subjected to NP+10 mg·L−1 CPPU bore the heaviest fruits (541.0 g), which were heavier than those borne by plants subjected to AP+10 mg·L−1 CPPU. CPPU treatment reduced the fruit cavity ratio in a concentration-dependent manner from 47.3% to 33.6% and increased the pulp thickness from 1.5 to 2.5 cm. Notably, supplementary CPPU treatment exerted no significant effects on fruit traits. Regarding taste, inconsistent results were obtained for sugar accumulation. Although the content of cucurbitacin B increased immediately after the initial CPPU treatment, it markedly decreased after 15 days of CPPU treatment. Therefore, mature melons did not have a bitter taste.

Open Access

Begonia montaniformis × Begonia ningmingensis var. bella hybrids have high ornamental potential. Hence, the aim of this study was to determine the optimal conditions for the micropropagation of a Begonia montaniformis × Begonia ningmingensis var. bella F1 progeny by using various concentrations of plant growth regulators (PGRs) and varying light spectra in half-strength Murashige and Skoog (1/2 MS) medium. The results showed that the explant regeneration was optimal when the lamina was incubated in a medium supplemented with 2.0 μM N6-benzylaminopurine and 0.8 μM α-naphthaleneacetic acid (NAA). Under such conditions, 98% of the explants regenerated adventitious shoots after 8 weeks, and 41 buds were produced per explant on average. The mean shoot length was 9.6 mm, and on average, 4.5 shoots per explant were more than 2 mm long. Subsequently, the induced adventitious shoots were transferred into rooting medium consisting of 1/2 MS and various NAA concentrations. After 4 weeks, the shoots subcultured in this medium showed ≈93% root induction and an average of 3.5 adventitious roots per explant. Furthermore, the applied light spectrum significantly influenced shoot regeneration, and optimal results were achieved under an equal distribution of blue, red, and infrared light. The histological sections of shoots regenerated from direct organogenesis were observed through scanning electron microscopy (SEM). Afterward, the rooting adventitious shoots were subcultured in PGR-free medium for 8 weeks. The seedlings were successfully acclimated 4 weeks after being transferred to soil and bloomed after 11 months in a greenhouse. Thus, the PGR composition in micropropagation efficiently shortened the time to blooming from 25 to 16 months.

Free access