Search Results
Phalaenopsis flowers are prone to wilting under ethylene (C2H4) stress. 1-Methylcyclopropene (1-MCP) can protect Phalaenopsis flowers against ethylene injury. In this study, we determined the residual effect of 1-MCP and how it is affected by temperature. The efficacy of multiple applications of 1-MCP was also investigated. The residual effect of 1-MCP was determined by pretreating blooming Phalaenopsis amabilis plants with 0.8 μL·L−1 1-MCP for 8 hours on Day 0 followed by 2 μL·L−1 ethylene fumigation for 12 hours on designated days. Without 1-MCP pretreatment, flowers began to wilt within 2 days after exposure to ethylene. Duration of the residual protection of 1-MCP on P. amabilis was ≈6 to 8 days during summer in Taiwan. Lower temperatures after 1-MCP application prolonged protection times. The full protection times under day/night temperatures of 25/20, 20/15, and 15/13 °C were 4 to 8, 10 to 13, and 13 to 17 days, respectively. Furthermore, multiple applications of 1-MCP extended the duration of 1-MCP protection against ethylene. Three applications increased the residual protection of P. amabilis by 1-MCP to at least 24 days.
Camellia flowers are highly prized for their beauty worldwide and are strongly symbolic in many cultures. A new interspecific hybrid cultivar, Camellia ‘Maozi’, generated by crossing Camellia pubipetala with C. japonica ‘Dahong Mudan’, exhibits strong hybrid vigor and has small flowers with a rare light tone of purple. In southwest China with a subtropical monsoon climate, young Camellia ‘Maozi’ trees flush shoots three times in spring, summer, and autumn, with an average annual growth of 12.9 cm. Adult trees flush once a year. Floral bud formation occurs in late April and early May. Camellia ‘Maozi’ flowers are sterile with no fruits and seeds produced. While an individual flower wilts 4–8 days after opening, the blossom can last 1–3 months. Frost damage can be found in young leaves when temperature drops to 4–7 °C. Under direct sunlight with temperatures of 37–39 °C lasting for more than 2 days, young leaves can turn yellow on their edges. Its primary diseases include sooty mold, shoot tip blight, and peony leaf tip blight. Its primary insect pests are tea green leafhopper (Jacobiasca formosana) and tea aphid (Toxoptera aurantii). Rooting of stem cuttings occurs directly from stems, mostly without callus development. Two hours of treatment with 500 mg·L−1 indole-3-butyric acid and rooting in a mix of latosolic red soil and vermiculite (2:1 v/v) resulted in high rooting rate and quality of aboveground growth. Grafting can be carried out from May to September, while survival rate and new shoot length are highest in July. The most compatible rootstock is C. oleifera, followed by C. polyodonta. The results of this study are of value for understanding the reproductive biology of Camellia ‘Maozi’ and further disseminating it as a new cultivar for camellia collection.
Chile pepper (Capsicum annuum L.) is an increasingly important vegetable and spice crop. Among the most devastating chile pepper–infecting viruses, especially in tropical and subtropical regions, are members of the whitefly transmitted Begomovirus, which cause pepper yellow leaf curl (PYLC). An effective PYLC management strategy is the development of resistant cultivars. However, genetic recombination, acquisition of extra DNA components, and synergistic interactions among different begomoviruses have resulted in the rapid emergence of new viruses that can infect new hosts, cause new disease symptoms, and overcome host resistance. In this project, 98 Capsicum entries comprising breeding lines, open pollinated varieties, genebank accessions, and wild species were screened for resistance to strains of Pepper yellow leaf curl Thailand virus (PepYLCThV). We used a randomized complete block design with three replications and 10 plants per replication in field net-houses at two locations (Khon Kaen and Kamphaeng Saen, Thailand) using augmented inoculation by viruliferous whiteflies. Scoring was done at ≈60, 90, and 120 days after inoculation using a standardized 6-point scale (1 = no symptoms to 6 = very severe symptoms), and the average of the scores of 10 plants within each replication was used for analysis. Although no entry was immune to the disease, the breeding line 9852-123 was highly resistant. Several accessions and lines were moderately resistant at both locations, although a high level of variability within these entries was observed. Overall, the disease severity at the Khon Kaen location was greater compared with Kamphaeng Saen, highlighting the importance of multilocation testing for disease resistance. The resistant entry identified here can be used to study gene action and to move resistance genes into well-adapted germplasm.
Habanero (Capsicum chinense Jacq.) is widely grown and consumed in West and Central African countries, and viral diseases represent an important production challenge. Diagnosis of the viral species affecting habanero productivity in Benin is limited, and understanding this will enable more efficient host resistance breeding. During 2019 and 2020, we characterized the incidence and severity of the viral diseases infecting nine promising habanero breeding lines and one commercial hybrid check under open field conditions in Benin. The horticultural performance, including yield and yield component traits of the entries, was determined during the 2 years of the experiment. A randomized complete block design was used with three replications, each with 24 plants. Data were recorded on days to 50% flowering and 50% fruit maturity, yield and on the yield components of fruit weight (g), fruit length (cm), and fruit width (mm), as well as disease incidence and severity. In total, 35 leaf samples were collected for viral diagnosis among habanero breeding lines. We found that Pepper veinal mottle virus (PVMV; Potyvirus) was the overwhelmingly predominant virus in our trials, with an 80% incidence; however, we found frequent coinfection of PVMV with Cucumber mosaic virus (CMV, Cucumovirus), Polerovirus, and, to a lesser extent, Chili veinal mottle virus (ChiVMV; Potyvirus). The mean disease incidence across all entries was 60%. AVPP1932 and PBC 2010 had the lowest disease incidence (35% and 43%, respectively), whereas AVPP1929 had the highest (86%) disease incidence. The F1 hybrid check Afadja had the overall highest yield, with 30 t⋅ha−1, followed by AVPP1932, with 19 t⋅ha−1, both in 2019. There was a negative correlation between disease incidence and total yield (r = −0.44; P < 0.001), supporting previous studies indicating that viral diseases are major production constraints for habanero in West Africa. This study provides insight regarding the need to improve habanero for resistance to aphid-transmitted viruses and develop integrated pest management strategies to limit losses in Benin.
To select resistant germplasm resources and understand the growth and physiological responses of kiwifruit (Actinidia sp.) to drought stress, five species, Actinidia macrosperma (Acma), Actinidia longicarpa (Aclo), Actinidia deliciosa (Acde), Actinidia hemsleyana (Ache), and Actinidia valvata (Acva), were assessed under tissue culture conditions. Rootless seedlings of five species were cultured in a medium containing polyethylene glycol [PEG (formula weight 8000)] to induce drought stress (0%, 5%, 10%, 15%, and 20%). After a 30-day culture, three growth indices [fresh weight (FW), plant height (PLH), and leaf number (LN)] and six physiological indices were determined, and the drought damage index (DDI) was determined. The DDIs of five species increased, and three growth indices decreased with increasing PEG concentrations. The following changes were observed under 20% PEG treatment conditions: superoxide dismutase (SOD) activities increased significantly in Acma, Aclo, and Ache specimens; peroxidase (POX) activities remained stable in Acde, Ache, and Acva specimens; and catalase (CAT) activities increased sharply in Acma and Acva. Furthermore, the results indicated that soluble sugar (SS) content increased slightly in Acma, Aclo, Acde, and Ache but it decreased in Acva specimens. Proline (PRO) content increased significantly in Acma and Acva, and malondialdehyde (MDA) contents tended to increase under drought stress in all five species. Principal component analysis (PCA) results indicated that the order of drought tolerance in the five genotypes examined in this study under tissue culture conditions was as follows: Acma > Acva > Acde > Aclo > Ache. Therefore, we concluded that Acma and Acva are more resilient germplasm resources that represent promising kiwifruit-breeding materials. Furthermore, tolerance to drought stress in these species should be further investigated under orchard conditions.