Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Wei Sun x
Clear All Modify Search

As a critically endangered tree in the Magnoliaceae family, huagaimu (Manglietiastrum sinicum) is represented by only 10 mature individuals in evergreen broadleaved montane forests of southeastern Yunnan Province, China. Our previous work revealed the existence of a seed dormancy period for this species. The current study was performed to evaluate the effects of plant growth regulators (PGRs) and moist chilling on breaking seed dormancy in this species. Germination of seeds pretreated for 24 h with gibberellic acid (GA3), α-naphthaleneacetic acid, 6-benzyladenine, and 2,4-dichlorophenoxyacetic acid indicated that only GA3, at concentrations of 300 and 500 mg·L−1, can significantly break the seed dormancy of huagaimu after 50 days of incubation, with about 66% germination under 500 mg·L−1 GA3. Moist chilling at 4 °C for 3 weeks can also effectively break the seed dormancy of the species, with 56% of seeds treated in this way germinating after 30 days of incubation. The combined treatments of PGRs followed by moist chilling were also conducted. Based on germination results after 30 days of incubation, the seed germination of combined treatments was significantly higher than that of PGR treatments. However, the seeds treated only with moist chilling presented the highest germination percentage among all the treatments.

Free access

The organogenesis potential is different among cultivars and must be optimized for individual genotype. Shoot organogenesis capacity from in vitro leaves and root organogenesis capacity of in vitro shoots in six clonal apple rootstock cultivars were compared. The shoot organogenesis capacity was highly genotype dependent. ‘GM256’ was found to be the most responsive genotype for shoot regeneration from leaf explants among the cultivars, showing high regeneration percentage on all tested media. The effects of basal medium composition and cytokinins on shoot regeneration were different depending on rootstock genotype. Optimum regeneration occurred on Murashige and Skoog (MS) basal medium for ‘71-3-150’, and optimum regeneration occurred on Quoirin and Lepoivre (QL) basal medium for ‘60-160’ and ‘ПБ’. Thidiazuron (TDZ) was more effective than 6-benzylaminopurine (BA) for Malus prunifolia (Y), whereas TDZ and BA were not significantly different for the other cultivars. All rootstock cultivars showed high root organogenic capacity. The percentage of rooting reached more than 90% and the mean root number per plantlet ranged from three to five. The optimum rooting medium was different for different rootstock cultivars. Optimum root organogenesis occurred on half-strength QL medium for ‘GM256’ and ‘Y’, and for ‘ПБ’ and ‘JM7’ on one-quarter-strength MS medium.

Free access

Seedlings of tomato (Lycopersicon esculentum Mill.) and cabbage (Brassica oleracea L. var. Capitata) were planted in 240-cell plug trays in the greenhouse and subjected to irrigation with water at different temperatures once a day. Irrigation with cold (5 to 15 °C) water reduced stem length of tomato by 28% to 32% in comparison with irrigation with water at room temperature (27.5 to 30.5 °C). Use of water at 10 °C did not affect total shoot dry weight but increased the shoot dry weight per centimeter of stem. Irrigation with water at 5 °C reduced stem length of cabbage seedlings 40%, but use of water at 10 and 15 °C did not. Both shoot and root dry weights were increased by irrigation with water at 10 °C. These results demonstrate that irrigation with cold water provides an effective method for improving the quality of plug-grown seedlings.

Free access

Cherry leaf spot (CLS), caused by Passalora circumscissa, is a fungal disease that can cause decreased fruit quality and yield via inconsistent ripening or premature defoliation. Germplasm resource screening is the most reliable approach to disease control for economically important crops. However, information is limited in China about the resistance of cherry cultivars to leaf spot caused by P. circumscissa. The aim of this study was to identify the resistance levels of cherry cultivars. Fifty-two cherry cultivars, including 40 Prunus avium, four Prunus pseudocerasus, and eight Prunus cerasus cultivars were collected for resistance level characterization. These specimens were then used to screen for P. circumscissa resistance through both detached leaf assays and natural field infection. Significant differences in the disease index (DI) value among test cultivars, ranging from 5.7 (resistant) to 53.7 (highly susceptible) and 6.5 (resistant) to 53.2 (highly susceptible), were observed under the controlled and field conditions respectively. Correlation coefficients between DI in pairs of years were highly significant (0.77–0.86). Although resistance rankings for cherry cultivars between screening methods were variable, the resistance levels of 52 cultivars evaluated under controlled and field condition were comparable with a correlation coefficient of 0.70 (P < 0.01). The results indicated that, across cherry cultivars, responses to CLS in the detached leaf assay corresponded well to responses under field conditions. A detached leaf assay was developed as a complementary method to facilitate the screening of cherry cultivars for resistance to leaf spot caused by P. circumscissa. Our study provides a theoretical basis for cherry disease resistance breeding and rational cultivar utilization.

Open Access

Lignin is the main component of stone cells, and stone cell content is one of the crucial factors for fruit quality in chinese white pear (Pyrus ×bretschneideri). The lignin biosynthesis pathway is complex and involves many enzymatic reactions. Cinnamate-4-hydroxylase [C4H (EC.1.14.13.11)] is an essential enzyme in lignin metabolism. This study was conducted to investigate the effect of bagging on lignin metabolism during fruit development in chinese white pear. The study showed that bagging had little effect on stone cell content, lignin content, C4H activity, and C4H gene expression and that there was a positive correlation between C4H gene expression and lignin content as well as stone cell content. Moreover, a full-length complementary DNA (cDNA) encoding C4H (PbrC4H, GenBank accession number KJ577541.1) was isolated from chinese white pear fruit. The cDNA is 1515 bp long and encodes a protein of 504 amino acids. Sequence alignment suggested that the deduced protein belongs to the P450 gene family and that C4H might be located subcellularly in the cell membrane. The results indicate that bagging cannot change the lignin and stone cell content significantly and that C4H catalyzes a step in lignin biosynthesis. These findings provide certain theoretical references and practical criteria for improving the quality of chinese white pear.

Free access

Ginkgo biloba L. (ginkgo) is generally regarded as a tolerant species to environmental stresses. However, its tolerance mechanisms are not well understood, particularly for salt stress. To evaluate the species’ physiological responses to salt stress, 3-year-old ginkgo seedlings were exposed to a range of salinity levels (0% to 1.0% NaCl). A significant reduction in maximum (F v/F m) and actual (ΦPSII) quantum yields of photosystem II (PSII) photochemistry and the nonphotochemical quenching (qN) coefficient only occurred in late treatment stages at the salinity levels of 0.6% to 1.0%. As salt concentration increased, the response time and chlorophyll (Chl) fluorescence indices decreased. Overall, the activities of superoxide dismutase (SOD) and peroxidase (POD); contents of catalase (CAT), reduced glutathione (GSH), and flavonoids; and scavenging rate of free radicals enhanced under salinity stress. These data indicate that ginkgo seedlings are tolerant to low salt stress, and enzymatic and nonenzymatic antioxidant systems seem to work synergistically to reduce lipid oxidation under NaCl stress because malondialdehyde (MDA) content did not increase. Correlation and principal component analyses determined that water potential, Chl fluorescence parameters, activities of POD and SOD, contents of CAT and flavonoids, and hydroxyl (•OH) and diphenyl picrylhydrazyl (DPPH) free radical scavenging capability were sensitive to salt stress. These parameters can be used for in vitro or rapid and nondestructive monitoring of the responses of ginkgo seedlings to salinity stress. It is of significance to understand the tolerance mechanisms of ginkgo to salt stress, reduce the harm of NaCl and other snow-melting agents to ginkgo as shade trees, and develop new salt-tolerant varieties.

Free access

Gypsophila paniculata is an ornamental crop with medicinal value. To date, limited information has been reported about the natural products in G. paniculata to explain its medicinal function. The current study reports the natural products found in G. paniculata stem for the first time. Thirty-three compounds were isolated from the extract of G. paniculata stem and identified by gas chromatography-mass spectrometry, 10 of which have contents >2%. These were 2-O-methyl-D-mannopyranose (37.4706%), glycerol (12.5669%), two tetratetracontane isomer (7.6523 + 3.5145%), tetrahygro-4-pyranol (5.3254%), 1,6-anhydro-beta-d-glucopyranos (4.7507%), palmitic acid (4.1848%), 4-hydroxy-3-methoxystyrene (3.7439%), methyl-octadeca-9,12-dienoate (2.7490%), and 2-deoxy-D-galactose (2.6193%). Another bioactive compound, condrillasterol, was identified with 1.3384% content. We also reported that G. paniculata possesses antioxidant activity possibly associated with the presence of a phenolic chemical 4-hydroxy-3-methoxystyrene. Our data collectively demonstrate that G. paniculata contains some bioactive compounds with high contents and antioxidants, consistent with its role as a medicinal herb.

Open Access

The chloroplast genome of an albino mutant isolated from tissue culture of the bamboo Bambusa edulis Munro was examined to identify aberrations. A number of the chloroplast genes encoding ATP synthases, photosystem II subunits, NADH dehydrogenase, and ribosomal proteins had been deleted, at least partially, in the albino mutant. Comparison of the two-dimensional electrophoresis profiles of albino and green bamboos revealed three spots of reduced intensity, indicating repression of these proteins in the albino mutants. Mass spectroscopic analysis subsequently revealed that two of these proteins are 33-kDa subunits of the photosystem II oxygen-evolving protein complex (PsbO) and one is a 23-kDa subunit of photosystem II oxygen-evolving protein complex (PsbP). The genes encoding these two proteins were cloned from B. edulis, and were denoted BePsbO (accession no. EF669513) and BePsbP (accession no. EF669512). Reverse transcription polymerase chain reaction and two-dimensional gel analyses of BePsbO and BePsbP in green and albino bamboos grown in the light or dark revealed that the albino mutant, similar to its green counterpart, sensed the light signal, resulting in the induction of BePsbO and BePsbP transcription, but it did not accumulate the protein products. We conclude that the repression of protein-expressing BePsbO and BePsbP is because of a defect in post-transcriptional regulation in the albino mutant.

Free access