Search Results
`Maffei-15' lima beans were subjected to three irrigation regimes (natural rainfall only, partial = 50 mm each week of rain or irrigation from first-flower bud to harvest, and full = 50 mm each week of rain or irrigation from planting to harvest), two between-row spacings (38 and 76 cm), and two in-row plant spacings (5 and 10 cm). The wider in-row spacing increased individual plant vegetative growth but had no effect on economic yield. The combination of 38-cm rows and partial irrigation provided the highest crop growth rate, plant dry matter, leaf area index, water-use efficiency, and economic yieid (equivalent to 3.3 t·ha-1).
Potential increases in the yield of agronomic crops through enhanced light interception have led many growers to consider using narrow rows in lima bean (Phaseolus lunatus L.). However, no information is available on how narrow row spacing affects weed management or fits into an integrated pest management strategy. To address this, field studies were conducted in Delaware and Maryland in 1996 and 1997 to evaluate the effects of row spacing (38 vs. 76 cm) on weed control, and on yield and quality of lima bean. Weed management inputs were also evaluated with labeled or reduced pre-emergence rates of metolachlor plus imazethapyr applied broadcast or banded. Only 76-cm rows were cultivated according to the standard practice for this production system. In general, row spacing, herbicide rate, and herbicide application method had no effect on lima bean biomass or yield, on weed density, control, or biomass production, or on economic return. However, weed control consistency was improved when wide rows were used, even with reduced herbicide rates, possibly because of cultivation. Using reduced herbicide rates and band applications resulted in 84% less herbicide applied without affecting weed control. Chemical names used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon); 2-[4,5-dihydro-4-methyl-4-(1-methylethyl-4-(1-methylethyl)-5-oxo-1Himidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid (imazethapyr); 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 2-[1-(ethoxyimino)butyl]-5-[2-ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one (sethoxydim).
Field studies were conducted in 1997 and 1998 to evaluate labeled (1×) or reduced (0.5×) rates of metolachlor plus imazethapyr preemergence either broadcast or band applications to lima bean (Phaseolus lunatus L.) planted in 30-inch (76-cm) or 15-inch (38-cm) rows for weed control, yield, harvestability, and harvest recovery. Lima bean was planted in large plots simulating a commercial production system. All 30-inch rows were cultivated once 40 days after planting in 1997 and 21 days after planting in 1998. No differences were noted in weed densities between treatments both years. Marketable lima bean yield was greater from plots thatwere spaced 15 inches apart in 1997 only. However, total hand-harvested yield in both years, machine-harvested yield in 1998, and marketable yield in 1998 were not different between treatments. Measurements on harvest recovery revealed that a greater number of unstripped pods were left on plants after harvest in 15-inch row plots that were sprayed broadcast with 1× herbicide rate in 1997 only. Weight of beans lost per unit area and trash weight from 7-oz (200-g) bean sample was similar among treatments both years. Overall, weed control, yield, and harvest efficacy of lima bean was not impacted by row spacing, herbicide rate, or method of herbicide application in a commercial production system.
'Maffei 15' baby lima bean seeds were sown every 6 cm in rows 76 cm apart to yield a nominal stand of 215,000 plants/ha at two locations in Delaware over 2 years. Seedlings were thinned within 2 weeks of planting to provide 0%, 16.7%, 33.3%, and 50.0% stand reduction at two in-row spacing patterns to determine subsequent effects on vegetative and reproductive growth. Shoot fresh weight per square meter was decreased only in 2003 by 21% and bean fresh weight per square meter was decreased only in 2004 by 13.8% when plant stand decreased to 50%. This disproportional vegetative and reproductive growth response to stand reduction resulted from a compensatory linear increase in shoot fresh weight, usable pod number, and bean fresh weight of individual plants. Thus, 'Maffei 15' lima bean tolerates a considerable loss of plant stand with little or no effect on yield.