Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: W.T. Lanini x
Clear All Modify Search
Full access

M.J. Haar, S.A. Fennimore, M.E. McGiffen, W.T. Lanini and C.E. Bell

In an effort to identify new herbicides for vegetables crops, broccoli (Brassica oleracea) cantaloupe (Cucumis melo), carrot (Daucus carota), head lettuce (Lactuca sativa), bulb onion (Allium cepa), spinach (Spinacia oleracea) and processing tomato (Lycopersicon esculentum) were evaluated in the field for tolerance to eight herbicides. The following herbicides and rates, expressed in a.i. lb/acre, were applied preemergence: carfentrazone, 0.05, 0.1, 0.15 and 0.2; flufenacet, 0.525; flumioxazin, 0.063, 0.125 and 0.25; halosulfuron, 0.032 and 0.047; isoxaben, 0.25 and 0.50; rimsulfuron, 0.016 and 0.031; SAN 582, 0.94 and 1.20 and sulfentrazone, 0.15 and 0.25 (1.000 lb/acre = 1.1208 kg·ha-1). Tolerance was evaluated by measuring crop stand, injury and biomass. Several leads for new vegetable herbicides were identified. Lettuce demonstrated tolerance to carfentrazone at 0.05 and 0.10 lb/acre. Cantaloupe and processing tomato were tolerant of halosulfuron at 0.032 and 0.047 lb/acre. Broccoli, cantaloupe and processing tomato were tolerant of SAN 582 at 0.94 lb/acre. Broccoli and carrot were tolerant of sulfentrazone at 0.15 lb/acre.

Full access

E.V. Herrero, J.P. Mitchell, W.T. Lanini, S.R. Temple, E.M. Miyao, R.D. Morse and E. Campiglia

No-till processing tomato (Lycopersicum esculentum Mill.) production in four winter cover crop-derived mulches was evaluated in 1997 and 1998 in Five Points, Calif. The effectiveness of two medics, `Sava' snail medic (Medicago scutellata Mill.) (sava), and `Sephi' barrel medic (Medicago truncatula Gaertn.) (sephi), and two cereal/legume cover crop mixtures, triticale/`Lana' woolypod vetch (X Triticosecale Wittm./Vicia dasycarpa Ten.) (triticale/vetch) and rye/`Lana' woolypod vetch (Secale cereale L./V. dasycarpa) (rye/vetch), was compared with two conventionally tilled fallow controls (with and without herbicide) (fallow+h and fallow-h) in suppressing weeds and maintaining yields with reduced fertilizer inputs. The comparison was conducted as a split plot, with three N fertilization rates (0, 100, and 200 lb/acre; 0, 112, and 224 kg·ha-1) as main plots and cover crops and fallow controls as subplots. Tomato seedlings were transplanted 3 weeks after the cover crops had been mowed and sprayed with herbicide. There were no significant differences in weed cover in the no-till cover crop treatments relative to the fallow controls in 1997. Early season weed suppression in rye/vetch and triticale/vetch plots was similar to herbicide-treated fallow (fallow+h) in 1998, however, later in the 1998 season weed suppression was best in the fallow+h. Tissue N was highest in the fallow treatments in both 1997 and 1998. Yields were highest in the triticale/vetch and fallow and lowest in sephi treatments in 1997, but there were no differences among treatments in 1998. These results demonstrate the feasibility of no-till mulch production of furrow irrigated processing tomatoes and identify opportunities for further optimization of the system.

Full access

N.M. Madden, J.P. Mitchell, W.T. Lanini, M.D. Cahn, E.V. Herrero, S. Park, S.R. Temple and M. Van Horn

Field experiments were conducted in 2000 and 2001 in Meridian, Calif. to evaluate the effects of cover crop mixtures and reduced tillage on yield, soil nitrogen (N), weed growth, and soil moisture content in organic processing tomato (Lycopersicum esculentum) production. The trial was set up as a randomized complete-block design with eight treatments consisting of a 2 × 3 (cover crop × tillage) factorial design, a fallow control (F) and a single strip-till (ST) treatment. Cover crop mixtures were either legumes (L), common vetch (Vicia sativa), field pea (Pisum sativum) and bell bean (Vicia faba), or those legumes with grasses (GL), annual ryegrass/triticale (Lolium multiflorum/xTriticosecale) in 2000; cereal rye (Secale cereale)/triticale in 2001. Tillage treatments included an incorporation of the cover crop at planting (IP), a delayed incorporation (DI) (17 to 19 days after planting), and no-till (NT). Due to regrowth of the annual ryegrass in 2000, tomato fruit yields in 2000 were reduced by 50% to 97% within all GL treatments. However, regrowth of the cover crop was not a problem in 2001 and yields were not different among treatments. Total percent weed cover was 1.6 to 12.5 times higher in NT than IP treatments in 2000 and 2.4 to 7.4 times higher in 2001 as weed pressure was mainly affected by tillage practices and less by cover crop type. In 2000, available soil N was 1.7 to 9.4 times higher in L than GL treatments and was significantly influenced by tillage, but there were no treatment effects in 2001 due to a 60% reduction in weed pressure and minimal or no cover crop regrowth. Soil moisture content did not differ between treatments in either year. These results demonstrate the importance of appropriate selection and termination of cover crops for their successful adoption in organic conservation tillage systems.

Free access

J.P. Mitchell, W.T. Lanini, S.R. Temple, E.V. Herrero, E.M. Miyao, P. Brostrom, R. Morse and F. Thomas

Conservation tillage (CT) row crop production is currently not widely adopted in California. Recently, however, interest in evaluating the potential of CT systems to reduce production costs and improve soil quality is growing in many areas in the state. In 1997 and 1998, we evaluated four cover crop mulches (rye/vetch, triticale/vetch, Sava medic, and Sephi medic) in a CT-transplanted tomato system relative to the conventional winter fallow (CF) practice. In both years, yields were comparable to the CF under the triticale/vetch and rye/vetch mulches. Earthworm populations after 2 years of CT production were increased 2- to 5-fold under mulches relative to the CF system. Soil carbon was increased by 16% and 6% after 2 years of CT production under the triticale/vetch and rye/vetch mulches, respectively. Weed suppression under the triticale/vetch and rye/vetch was comparable to the CF with herbicide system early in the season in both years but was maintained through harvest in only one season. Soil water storage (0-90 cm) was similar at the beginning of the tomato season in triticale/vetch, rye/vetch, and fallow plots but was higher under the mulches during much of the last 45 days of the 1998 season. Further refinement of CT practices in California's vegetable production regions is needed before wider adoption is likely.