Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W.G. Harris x
Clear All Modify Search
Full access

W.G. Harris, M. Chrysostome, T.A. Obreza and V.D. Nair

Horticulture is an important industry in Florida despite formidable soil limitations. Favorable climate often makes the expense of overcoming these limitations economically feasible. Challenges arise from high water tables and/or sandy textures, both of which limit plant-available water and nutrient retention. High water tables of flatwoods (Spodosols) and marshes (Everglades Histosols) restrict root proliferation and commonly require artificial drainage. Upper zones of these soils are dominated by uncoated sand (Spodosols) or organic matter (Histosols) that has minimal sorption capacity for phosphorus (P) such that its transport poses an environmental risk without careful management. Nitrogen can be lost via denitrification under prolonged near-surface water saturation. At the other extreme but also prevalent in Florida are excessively well-drained sandy “sandhills” soils with limited water and nutrient retention. Nitrogen leaching from the latter soils can result in nitrate contamination in groundwater. Soil morphology is an important consideration in gauging nutrient and moisture retention. For example, each is enhanced by the presence of sand-grain coatings. Some amendments show promise in reducing P and moisture loss from sandy soils. Precarious balance between horticultural production and environmental risks for Florida soils has spurred development of approaches providing for a more accurate determination of the safe soil P storage capacity. Testing and refinement of these approaches are needed.

Free access

J.R. Evans, J.A. Balles, B.A. Brinkman, V.E. Harris, J.D. Helm, K.B. Kirksey, T.E. McKemie, G.G. Thomas and W. Rademacher

Prohexadione-Ca (BAS 12511W or Apogee™ Plant Growth Regulator) acts within a plant by blocking the biosynthesis of growth-active gibberellin. The result is decreased cell and shoot elongation; thus, vegetative growth in apple trees can be reduced. Air blast applications of prohexadione calcium were made in the Spring 1998 in commercial orchards. Application rate was 125 ppm a.i. applied twice beginning at 5 to 12 cm of new shoot growth. Reduction of shoot growth averaged 45% across locations. As a result of reduced vegetative growth, dormant pruning was reduced. In total, significant benefits to the grower included reduced pruning costs in addition to other positive effects such as improved light penetration and enhanced resistance to some pathogens. Research will continue with the effect of prohexadione-Ca on pruning in multiple year studies.