Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W.F. Lamboy x
Clear All Modify Search
Free access

M.T. Momol, W.F. Lamboy, P.L. Forsline and H.S. Aldwinckle

Malus sieversii is one of the primary progenitors of the cultivated apple. Since 1989, several collecting trips have been made to central Asia by personnel of the USDA and Cornell Univ. to collect seeds of wild Malus sieversii from many diverse ecosystems. In 1992, an ex situ plot in Geneva, N.Y., was established with trees grown from seed that was collected in three different habitats in Kazakstan, Tajikistan, and Uzbekistan in 1989. In 1995, trees grown from seed that was collected in five additional habitats in Kazakstan and Kyrgyzstan in 1993 were added to the ex situ plot. In the summers of 1995 and 1996, tips of vigorously growing shoots of 1135 seedlings from 79 different populations were inoculated by hypodermic syringe with 5 × 108 cfu/ml of Erwinia amylovora strain Ea273. Seedlings from the 1989 collection were in the fourth and fifth field-growing seasons, with some beginning to bear fruit. Seedlings from the 1993 collection were in first and second field-growing seasons. Results from both seasons indicated that individuals within each of the 79 populations of M. sieversii are resistant to fire blight (defined as ≤20% shoot length infected). Resistance differed among populations, with some populations having no resistant individuals and others having >80% of the seedlings resistant. The range of resistance is quite similar to that seen among apple cultivars from North America and Europe. In another test, some accessions from 1989 collection had sufficient bloom for inoculation in 1995 and 1996. At full bloom, blossoms on these trees were inoculated with the E. amylovora suspensions (5 × 107 cfu/ml) using a backpack sprayer. These also gave diverse resistant reactions.

Free access

Philip L. Forsline, Leigh E. Towill, John W. Waddell, Cecil Stushnoff, Warren F. Lamboy and James R. McFerson

Clonally propagated crops, unlike seed-propagated crops, require intense and costly maintenance, generally in ex situ field gene banks. Consequently, large germplasm collections of tree species especially, are difficult to conserve in a well-replicated fashion and are vulnerable to damage from environmental stresses. Accordingly, long-term storage in liquid nitrogen presents a viable conservation alternative. To assess effectiveness of one approach to cryopreservation, dormant buds from 64 apple (Malus ×domestica Borkh. and other Malus spp.) accessions were collected and preserved in liquid nitrogen using a dormant-vegetative-bud method. Buds were retrieved from liquid nitrogen storage, rehydrated, and grafted onto rootstocks to determine survival. Mean recovery was 76% for 40 cold-hardy accessions, 66% for 20 moderately cold-hardy accessions, and 24% for four cold-tender accessions (range: 16% to 100%). Only four accessions had ≤25% recovery while 54 accessions had ≤50% recovery and 35 accessions had ≤75% recovery. No significant decline in recovery of these accessions by bud grafting occurred after 4 years of liquid nitrogen storage.