Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W.E. Richie x
Clear All Modify Search

Turfgrass growth regulators (TGRs) are an effective means of reducing vertical shoot growth and the production of clippings of tall fescue (Festuca arundinacea Schreb.). Recently, using TGRs has been suggested as a way to acclimate or precondition turfgrass to stress conditions, possibly through total nonstructural carbohydrate (TNC) accumulations and altered TNC partitioning. The TNC may accumulate in response to growth suppression associated with the TGR application. The objective of this study on tall fescue was to determine the effect of a single trinexapac-ethyl (TE) application on tissue weight and on TNC concentration and weight in leaves, crowns, and roots when sampled 6 to 7 weeks following TE application. This sampling time was chosen to coincide with the 28- to 56-day callback schedule that professional lawn care personnel follow when working with tall fescue. In 1995, a high level of turfgrass maintenance was used, consisting of N applications at 49 kg·ha-1 per month and two mowings per week, while in 1996 a moderate level was used, consisting of N applications at 24 kg·ha-1 per month and one mowing per week. Though TE provided reasonable inhibition of clipping growth for a 4-week period during both years, we observed no increase in tissue weight or in TNC concentration or weight in leaves, crowns, and roots when sampled 6 to 7 weeks after treatment. Chemical name used: [4(cyclopropyl-α-hydroxy-methylene)-3,5-dioxocyclohexanecarboxylic acid ethyl ester] (trinexapac-ethyl).

Free access

Iron-deficiency (Fe-deficiency) stress, characterized by chlorosis of leaf tissue, is a major limiting factor in turfgrass production on calcareous soils. The objectives of this study were to: 1) evaluate ferrihydrite-amended growth media and the threshold amount of Fe initially added for use in a whole-plant screening procedure for selecting cultivars that are tolerant to Fe-deficiency stress conditions; 2) measure and evaluate whole-plant growth characteristics that could be an index of Fe deficiency stress; and 3) assess the potential of using a synthetically produced Fe oxide, ferrihydrite, as a slow-release Fe fertilizer source. Iron-stress sensitive `Raleigh' St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] and Fe-stress tolerant `Tifway' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Davy] cultivars were grown under glasshouse conditions in a medium consisting of quartz sand, 5% (m/m) CaCO,, and a ferrihydrite amendment providing Fe in concentrations of 0, 15, 30, 46, or 120 mg·kg-1 media, (equivalent to 2, 3, 4, 5, or 10 mg DTPA-extractable Fe/kg media). There also was a nonlimiting iron control. St. Augustinegrass was first rated for iron chlorosis 83 days after planting (DAP) while bermudagrass was first rated at 294 DAP. Initial Fe levels equivalent to 5 mg DTPA-extractable Fe/kg media showed potential for screening genotypes. Visual estimates of iron chlorosis and chlorophyll contents of leaves were the best indicators of low soil Fe availability. A single ferrihydrite soil amendment at 10 mg DTPA-extractable Fe/kg media was adequate in preventing chlorosis for the duration of the study (174 and 509 days for St. Augustinegrass and bermudagrass, respectively). Chemical name used: Diethylenetriaminepentaacetic acid (DTPA).

Free access