Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: W.D. Goff x
  • Refine by Access: All x
Clear All Modify Search
Full access

Michael W. Smith and William D. Goff

Patch budding is a common propagation technique for pecan (Carya illinoinensis) commonly used in the central and western United States, but seldom used in the southeastern United States. Success rates vary, but 75% is normally an acceptable survival rate. Selected budwood and rootstock treatments were evaluated to improve budding success. Additional studies were conducted to evaluate bud forcing techniques that would leave the rootstock intact, allowing a second bud to be inserted if the first patch bud failed. Girdling exceptionally vigorous shoots at the base used for budwood improved success, but neither tip pruning shoots used for budwood or rootstock affected patch bud survival. Patch budding was more successful using budwood from 1-year-old branches than from current season shoots, a finding that greatly extends the window available for propagation using patch buds. The age of rootstock wood at the budding site did not affect patch bud survival. Girdling the rootstock immediately above the dormant patch bud was less effective than top removal for forcing the patch bud in the spring. Application of a lanolin paste of 0% to 5% 2,3,5-triodobenzoic acid (TIBA) or 0.02% 6-benzylaminopurine (BAP) to a girdle immediately above the patch bud was positively related to the percentage of patch buds forcing when tree tops were left intact. The combination of girdling, 5% TIBA, and 0.02% BAP resulted in 76% of the buds forcing compared with 73% forced using top removal. This approach damages trees less and enables a second chance for patch budding on a stronger tree.

Full access

Michael W. Smith and William D. Goff

Pecan (Carya illinoinensis) nuts with cracked shells reduce market grade and are usually removed during pecan cleaning. One type of crack is the shell suture that splits on certain cultivars with thin shells and high kernel percentages. ‘Schley’ nuts with diverse kernel moisture concentrations were dislodged from trees on cloudy and sunny days and exposed to ambient environmental conditions for 1 day on the ground. Samples were collected immediately after dislodging and after 1 day’s exposure, sealed in a plastic bag that was placed in a cooler, and then transported to the laboratory where they were assessed for kernel moisture and split sutures. The number of nuts with split sutures was unaffected by kernel moisture percentage or sunlight exposure when samples were collected immediately after dislodging. However, after 1 day, nuts with high kernel moisture percentages with high solar radiant exposure (sunny day) had substantially more nuts with suture splits than those with low solar radiant exposure (cloudy day). At the lowest kernel moisture percentages, the number of nuts with split sutures was insensitive to solar radiant exposure. During the first harvest, ‘Schley’ trees should be shaken to dislodge nuts on cloudy days and harvested before exposure to bright sunshine to minimize suture split. This probably extends to other cultivars with a history of suture split. An alternative to shaking on cloudy days, though not tested, might be to shake trees in the evening and harvest the next morning before exposure to high light conditions. Later, during the harvest season when kernel moisture was lower, sunlight exposure has little, if any, effect on suture splits.

Free access

Michael W. Smith, William D. Goff, and M. Lenny Wells

The productive life of a pecan [Carya illinoinensis (Wangenh.) K. Koch] orchard frequently spans two or more generations, but eventually orchards require renewal. Weather events damage tree canopies, pests affect tree health and productivity, and new cultivars offer greater yield potential or better nut quality. A popular method of orchard renewal is selective tree removal combined with interplanting new trees. Many old pecan orchards in the southeastern United States are infected with crown gall [Agrobacterium tumefaciens (Smith and Townsend) Conn.], potentially a problem for interplanted trees. Two tree types, nursery-grafted trees and seedling trees that were grafted 3 years after transplanting, were evaluated 6 years after transplanting. Transplanted trees varied in distances from established 80-year-old trees or residual stumps after tree removal. Ten trees near the study site, located 3.6 m from crown gall-infected stumps, were excavated to determine disease incidence. No crown gall was observed on any of the 87 trees in the study or the excavated trees. Trunk diameters of interplanted trees increased as distance from the nearest stump decreased and distance from the nearest established tree increased. Leaf elemental concentrations of the 6-year-old transplants were not related to observed growth differences. Conclusions include 1) stumps promoted rapid transplant growth; 2) crown gall infections of transplanted trees were unlikely even when crown gall symptoms were obvious on adjacent trees and stumps; and 3) transplant growth was suppressed by established trees.

Full access

Michael W. Smith, Charles T. Rohla, and William D. Goff

Pecan (Carya illinoinensis) leaf elemental concentrations are the industry standard to guide fertility programs. To provide meaningful information, a standard index tissue collected at a specific development stage is required along with established elemental sufficiency ranges. We report pecan leaf elemental sufficiency ranges used in Oklahoma that were developed based on research in Oklahoma and elsewhere. In addition, fertilizer recommendations, based on various leaf elemental concentrations, are included.

Free access

T.E. Thompson, W.D. Goff, M.L. Nesbitt, R.E. Worley, R.D. O'Barr, and B.W. Wood

Free access

W.G. Foshee, W.D. Goff, K.M. Tilt, J.D. Williams, J.S. Bannon, and J.B. Witt

Organic mulches (leaves, pine nuggets, pine straw, grass clippings, and chipped limbs) were applied at depths of 10, 20, or 30 cm in a 3 × 3-m area around young pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. These treatments were compared to an unmulched herbicide treatment and a common bermudagrass [Cynodon dactylon (L.) Pers.] sod. Trunk cross-sectional areas (TCSAs) of the mulched trees were larger than those of trees in the sod or unmulched plots and increased linearly as mulch depth increased. All mulches influenced TCSA similarly. Mean TCSA for mulched trees increased 14-fold compared to an increase of 8-fold for the unmulched trees and the sod in this 3-year study. Thus, common yard-waste mulches can be used effectively to increase growth of young pecan trees.

Free access

Ken Tilt, William D. Goff, David Williams, Ronald L. Shumack, and John W. Olive

Pecan [Carya illinoinensis (Wangenh.) C. Koch `Melrose'] and pear (Pyrus calleryana Decne. `Bradford') trees in the nursery grew more in containers designed to hold water in the lower portion. The water-holding reservoir was obtained either by placing 76-liter containers in a frame holding water to a depth of 6 cm or by using containers with drainage holes 6 cm from the bottom. Continuous waterlogging at the bottom of containers resulted in root pruning and root death in the lower portion of the containers, but roots grew well above the constantly wet zone. Fresh weight of plant tops and trunk diameters were greater after two growing seasons in the containers with water reservoirs compared to those grown in similar containers with no water reservoirs. Total root dry weight was unaffected.

Free access

Wheeler G. Foshee III, Robert W. Goodman, Michael G. Patterson, William D. Goff, and W. Alfred Dozier Jr.

Yields and economic returns above treatment variable costs were determined for young `Desirable' pecan [Carya illinoinensis (Wangenh.) C. Koch] trees grown for nine seasons under ten combinations of orchard floor management practice and irrigation. Orchard floor management practices were 1) no weed control, 2) mowed, 3) total weed control with herbicides, 4) grass control only with herbicides, or 5) disking, and trees were either irrigated or nonirrigated. Total weed control with herbicides increased cumulative yield through the ninth growing season by 358% compared to no weed control. In the humid environment where this experiment was conducted, irrigation did not increase crop value obtained from the young trees, except for 1 year. At the end of the ninth season, total weed control with herbicides was the only treatment to have a positive net present value. These data indicate that establishment costs for young `Desirable' pecan trees can be recovered as early as the eighth growing season if competition from weeds is totally eliminated.