Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W.C. Chang x
  • All content x
Clear All Modify Search
Free access

L.X. Zhang, W.C. Chang, Y.J. Wei, L. Liu, and Y.P. Wang

Cryopreservation of pollen from two ginseng species —Panax ginseng L. and P. quinquefolium L.—was studied. Freezing anthers that served as pollen carriers to –40C before liquid N storage affected pollen viability little after liquid N storage. Anther moisture content affected pollen viability significantly when stored in liquid N. The ideal anther moisture content to carry pollen for liquid N storage was 32% to 26% for P. ginseng and 27% to 17% for P. quinquefolium. Viability of pollen from P. quinquefolium anthers with 25.3% moisture content changed little after 11 months of liquid N storage.

Free access

L.S. Chang, A.F. Iezzoni, G.C. Adams, and F.W. Ewers

Eight open-pollinated peach families [Prunus persica (L.) Batsch] were selected from a germplasm collection that was screened for tolerance to Leucostoma persoonii (Nits.) Höhn. [imperfect state, .Leucocytospora leucostoma (Pers.) Höhn] following field inoculation. The eight peach families were either susceptible or tolerant to L. persoonii infection based on canker length measurements. Three open-pollinated seedlings per family were chosen for evaluation. Following artificial inoculation, measurements of hydraulic conductance per pressure gradient (Kh) were made on 2-year-old branch segments from the 24 seedlings, and safranin dye was used to mark the conductive xylem pathways. For the peach families tolerant to L. persoonii, the specific Kh of the canker branch segments was greater than that for the most susceptible peach families. The inoculated branch segments from the tolerant peach families maintained ≈15% to 30% of the water transport of control segments. Safranin dye movement indicated that the sapwood in inoculated branch segments of seedlings from the susceptible peach families was almost completely blocked. Isolation experiments indicated deeper penetration of the fungus into the xylem of seedlings of susceptible than tolerant families. Xylem dysfunction appears to be correlated with a reduction in Kh, and the seedlings in the tolerant peach families are better able to maintain water transport through the stem segment invaded by the fungus.