Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: W.B. Sherman x
Clear All Modify Search
Free access

P.C. Andersen and W.B. Sherman

Free access

T.G. Beckman and W.B. Sherman

Recently observed hybrid populations of peach [Prunus persica (L.) Batsch] provide evidence for the presence of a single gene controlling full red skin color. The fruit of seedling populations of `UFQueen' × `Springbaby', `UFQueen' × `Springprince, FL93-12C × `Springprince, FL92-22C × BY79P1945, and AP98-18 o.p. were rated for percent red skin color at full maturity. At this stage of development, “full red” phenotypes display red color over the entire surface of the fruit, including the stem cavity and portions of the fruit shaded by leaves or stems. Both crosses with `UFQueen yielded populations displaying a 1:1 segregation ration for partial red: full red. All other crosses produced populations that did not deviate significantly from a 3:1 segregation ratio. These data are consistent with the hypothesis that the “full red” phenotype is a single gene recessive trait. We propose the gene symbols of fr and Fr for the recessive full red and dominant partial red (wild-type) alleles, respectively.

Free access

T.G. Beckman, G.W. Krewer and W.B. Sherman

Free access

P.M. Lyrene, W.B. Sherman and R.H. Sharpe

Free access

W.B. Sherman, P.M. Lyrene and R.H. Sharpe

Free access

W.B. Sherman, P.M. Lyrene and F.G. Gmitter

Free access

P.C. Andersen, W.B. Sherman and R.H. Sharpe

Free access

J.K. Brecht, K. Cordasco and W.B. Sherman

Two nonmelting flesh (`GUFprince' and `UF2000') and two melting flesh (`Tropic Beauty' and `Rayon') peach cultivars were segregated into ripeness categories at harvest according to initial flesh firmness and prepared as fresh-cut slices as described in Gorny et al. (HortScience 33:110–113), except that there were no “overripe” (0-13 N flesh firmness) stage nonmelting flesh fruit. Slices were stored at 1, 5, or 10 °C for 8 days and were evaluated for visual and taste quality, flesh firmness and color, and respiration and ethylene production rates every other day during storage. The optimal ripeness for preparing fresh-cut slices from the melting flesh cultivars was the “ripe” (13-27 N flesh firmness) stage; less-ripe melting flesh slices did not ripen at 1 or 5 °C and riper melting flesh slices and those held at 10 °C softened excessively, became discolored, and decayed. The optimal ripeness stage for the nonmelting flesh cultivars was 40-53 N flesh firmness, which corresponded to physiologically ripe (climacteric rise) for nonmelting flesh fruit, but melting flesh fruit at that firmenss were physiologically only mature-green (preclimacteric). Storage of nonmelting flesh slices was limited by surface desiccation at 1 °C, and by flesh discoloration at 5 and 10 °C, which was more severe in riper slices. The best storage temperature for both fruit genotypes was 1 °C, which prevented discoloration and decay over the 8-day storage period. Nonmelting flesh peach cultivars are better suited for fresh-cut processing than melting flesh cultivars because their firmer texture allows the use of riper fruit with better flavor than the less ripe fruit that must be used for fresh-cut melting flesh peaches.

Free access

P.C. Andersen, W.B. Sherman and R.H. Sharpe

Free access

W.B. Sherman, P.C. Andersen and P.M. Lyrene