Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W. Pett x
  • Refine by Access: All x
Clear All Modify Search
Free access

D.S. Douches, W. Li, K. Zarka, J. Coombs, W. Pett, E. Grafius, and T. El-Nasr

The potato tuber moth (Phthorimaea operculella Zeller) is the primary insect pest of cultivated potato (Solanum tuberosum L.) in tropical and subtropical regions, causing both foliar and tuber damage. In contrast, the Colorado potato beetle (Leptinotarsa decemlineata Say) is the most important insect pest in the northern potato production latitudes. The codon-modified Bacillus thuringiensis Bt-cry5 gene (revised nomenclature cry1IaI), specifically toxic to Lepidoptera and Coleoptera, was transformed into cultivar Spunta using an Agrobacterium vector to provide resistance to both potato tuber moth and Colorado potato beetle. The Bt-cry5 gene was placed downstream from the constitutive CaMV35S promoter. Two transgenic 'Spunta' clones, G2 and G3, produced high levels of mortality in first instars of potato tuber moth in detached-leaf bioassays (80% to 83% mortality), laboratory tuber tests (100% mortality), and field trials in Egypt (99% to 100% undamaged tubers). Reduced feeding by Colorado potato beetle first instars was also observed in detached-leaf bioassays (80% to 90% reduction). Field trials in the United States demonstrated that the horticultural performance of the two transgenic lines was comparable to 'Spunta'. These Bt-cry5 transgenic potato plants with high potato tuber moth resistance have value in integrated pest management programs.

Free access

D.S. Douches, T.J. Kisha, J.J. Coombs, W. Li, W.L. Pett, and E.J. Grafius

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is the most serious insect pest of potatoes throughout the eastern and north central United States. Host plant resistance to the Colorado potato beetle has been identified in wild Solanum species and Bt-transgenic potato lines. Detached-leaf bioassays (72 h) were conducted on insecticide-resistant, first instar Colorado potato beetles to study the effectiveness of individual and combined host plant resistance traits in potato. Potato lines tested include non-transgenic cultivars (`Russet Burbank', `Lemhi Russet', and `Spunta'), a line with glandular trichomes (NYL235-4), a line with high foliar leptines (USDA8380-1), and transgenic lines expressing either codon-modified Bt-cry3A or Bt-cry5 (Bt-cry1Ia1). Bt-cry3A transgenic lines, foliar leptine line, and foliar leptine lines with Bt-cry5 had reduced feeding compared to non-transgenic cultivars. Glandular trichome lines and glandular trichome lines with Bt-cry5 did not reduce feeding in this no-choice feeding study. Some Bt-cry5 transgenic lines, using either the constitutive promoters CaMV35s or (ocs)3mas (Gelvin super promoter), were moderately effective in reducing larval feeding. Feeding on Bt-cry5 transgenic lines with the tuber-specific patatin promoter was not significantly different than or greater than feeding on the susceptible cultivars. Mortality of first instars was highest when fed on the Bt-cry3A lines (68% to 70%) and intermediate (38%) on the Bt-cry5 `Spunta' line SPG3 where the gus reporter gene was not included in the gene construct. Host plant resistance from foliar leptines is a candidate mechanism to pyramid with either Bt-cry3A or Bt-cry5 expression in potato foliage against Colorado potato beetle. Without multiple sources of host plant resistance, long-term sustainability is questionable for a highly adaptable insect like the Colorado potato beetle.