Search Results
Abstract
(2-Chloroethyl) phosphonic acid (ethephon) applied as a foliar spray at 1000 and 2000 ppm to 3-, 4-, and 5-yr old nonbearing seedlings of apple (Malus pumila Miller) significantly increased the percentage of trees flowering for the first time and the total number of flower clusters per tree.
Abstract
Aerial shoot growth and rhizome production of greenhouse grown lowbush blueberry plants were stimulated by foliar applications of 2-chloroethylphosphonic acid (Ethrel) at 50 and 100 ppm. Increasing concentrations of 500, 1000, 5000, and 10,000 ppm resulted in a correspondingly greater growth inhibition. At 100 ppm, Ethrel solutions without a surfactant caused growth promotion when compared to plants treated with Ethrel with a surfactant.
Methyl jasmonate (Me-Ja) is a naturally occurring ubiquitous compound in plants. Me-Ja is considered to be a putative plant hormone because of its effect on plant processes such as senescence, germination, tuber formation, signal transduction, ethylene production, and abscission at low exogenous concentrations. We applied Me-Ja to fruit or whole trees of `Hamlin' or `Valencia' orange to determine the potential of this compound as a mature fruit abscission agent. Me-Ja (0, 1, 5, 10, or 20 mM in 0.1% Kinetic adjuvant) was applied to whole trees with a handgun or boom sprayer rates of 4850 and 1790 L·ha–1, respectively. Alternatively, tree fruit were dipped in Me-Ja solutions. Fruit drop, leaf drop and ethylene production in both fruit and leaves and fruit detachment force in fruit were monitored at various times up to 2 weeks after application. Me-Ja treatment resulted in increased ethylene production in fruit and leaves 1 to 2 days after application. Fruit detachment force significantly declined 6 to 10 days after application followed by significant fruit drop. Applications of Me-Ja >10 mM resulted in an unacceptable amount of canopy defoliation. The results suggest that Me-Ja has potential as an abscission agent for citrus. Future work will focus on improving uniformity of application and response.
Abstract
Three separate experiments were conducted in a mature Vitis labruscana Bailey ‘Concord’ vineyard in New York to determine the response of grapevines to daily, season-long sulfur dioxide (SO2) exposure, or to intermittent SO2 exposure simulating emissions from a 1700 MW coal-fired power plant. There was little SO2-induced necrosis on grape foliage from daily or power plant SO2. However, both treatments in ambient air increased susceptibility of leaves to oxidant stipple injury due to ambient ozone (O3). Daily SO2 increased leaf chlorosis. Power plant SO2 had no effect on vine growth, yield, or shoot maturation. Daily SO2 reduced soluble solids, growth, yield, and shoot maturation of grapevines. Damage to grapevines from SO2 seemed to be independent of SO2 induced leaf necrosis. SO2 reduced foliage tolerance to O3 injury in grapevines already stressed by ambient O3.
Abstract
Widespread stippled browning and premature senescence of leaves of grapevines were observed in grape growing regions near the Great Lakes. Those symptoms were identical to those obtained by exposing 2-year old potted ‘Concord’ and ‘Ives’ grapevines to 30 or 60 pphm ozone (O3) for 6 hr, indicating that the brown leaf disorder of grapevines is oxidant stipple, a manifestation of O3 injury.
Two field studies were conducted to evaluate the effect of metsulfuron-methyl and 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMN-pyrazole) on abscission of `Valencia' orange [Citrus sinensis (L.) Osbeck] during the 3-month harvest season. Solutions of metsulfuron-methyl at 0.5, 1, and 2 mg·L-1 active ingredient (a.i.) were applied at 10-day intervals beginning on 13 Feb. and ending 18 May 1998. Early in the harvest season, 1 or 2 mg·L-1 metsulfuron-methyl significantly reduced fruit detachment force (FDF) 14 days after application. Metsulfuron-methyl was less effective during a 4- to 6-week period following bloom (“less-responsive period”). After this period, metsulfuron-methyl regained the ability to loosen fruit. Applications of 2 mg·L-1 a.i. were more effective than 1 mg·L-1 in reducing FDF and causing leaf drop, but 0.5 mg·L-1 a.i. had little or no effect on FDF. Flowers and leaflets on developing shoots and young fruit completely abscised with 1 and 2 mg·L-1 a.i. Defoliation and twig dieback was extensive at all concentrations and spray dates, eliminating metsulfuron-methyl as a commercially viable abscission agent for citrus. In a separate experiment CMN-pyrazole at 50 and 100 mg·L-1 a.i. and metsulfuronmethyl at 0.5 mg·L-1 a.i. were applied to `Valencia' trees to determine fruit removal with a trunk shake and catch harvesting system. Application of both abscission materials before and after the “less-responsive period” resulted in a 10% to 12% increase in fruit removal when compared to control trees. Less than a 35% reduction in FDF was sufficient to significantly increase fruit removal. Only 100 mg·L-1 a.i. CMN-pyrazole significantly increased fruit removal when applied during the “less-responsive period.” Chemical names used: Methyl-2-(((((4-Methoxy-6-Methyl-1,3,5-Triazin-2-yl)-Amino)Carbonyl) Amino)Sulfonyl)Benzene (Metsulfuron-methyl); 5-Chloro-3-methyl-4-nitro-1-H-pyrazole (CMN-pyrazole).
A field experiment was conducted to determine effects of concentration and spray volume of metsulfuron-methyl as an abscission aid for mechanical harvesting of citrus. Concentrations of 1, 2, and 4 mg·L–1 metsulfuron-methyl were applied to `Hamlin' orange [Citrus sinensis (L.) Osbeck] trees at 470, 1900, and 4700 L·ha–1 (0.5 to 19 g·ha–1 a.i.). Effective fruit loosening was achieved with all applications >1.9 g·ha–1 (4 mg·L–1 at all volumes, 2 mg·L–1 at 1900 and 4700 L·ha–1, and 1 mg·L–1 at 4700 L·ha–1). Heavy defoliation and twig dieback were observed on trees receiving 2 and 4 mg·L–1 at all volumes. Defoliation and dieback became more severe and flower development and fruit set were inhibited as fruit loosening increased. The use of metsulfuron-methyl as an abscission agent for `Hamlin' oranges is not recommended until conditions for its safe application can be determined. Chemical names used: methyl 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl) amino] carbonyl] amino] sulfonyl] benzoate (metsulfuron-methyl).