Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: W. Garrett Owen x
Clear All Modify Search
Restricted access

W. Garrett Owen and Roberto G. Lopez

Crown division, tissue culture, and culm cuttings are methods for propagating purple fountain grass [Pennisetum ×advena Wipff and Veldkamp (formerly known as Pennisetum setaceum Forsk. Chiov. ‘Rubrum’)]. However, propagation by culm cuttings is becoming an economically attractive method for quick liner production. Our objective was to quantify the impact of propagation daily light integral (PDLI) and root-zone temperature (RZT) on root and culm development of single-internode purple fountain grass culm cuttings. Before insertion into the rooting substrate, cuttings were treated with a basal rooting hormone solution containing 1000 mg·L−1 indole-3-butyric acid (IBA) + 500 mg·L−1 1-naphthaleneacetic acid (NAA). The cuttings were placed in a glass-glazed greenhouse with an air temperature of 23 °C and benches with RZT set points of 21, 23, 25, or 27 °C. PDLIs of 4 and 10 mol·m−2·d−1 (Expt. 1) or 8 and 16 mol·m−2·d−1 (Expt. 2) were provided. After 28 d, culm and root densities (number) increased as the RZT increased from 21 to 27 °C, regardless of PDLI during Expt. 1. Compared with 4 mol·m−2·d−1, a PDLI of 10 mol·m−2·d−1 generally resulted in the greatest root biomass accumulation. For example, as PDLI increased from 4 to 10 mol·m−2·d−1, root dry mass increased by 105%, 152%, and 183% at RZTs of 21, 25, and 27 °C, respectively. In Expt. 2, as the RZT increased from 21 to 23 °C, root dry mass increased by 70% under a PDLI of 8 mol·m−2·d−1. However, root dry mass was similar among all RZTs under a PDLI of 16 mol·m−2·d−1. Our results indicate that single-internode culm cuttings of purple fountain grass can be most efficiently propagated under PDLIs of 8–10 mol·m−2·d−1 together with RZT set points of 23 to 25 °C for quick liner production.

Restricted access

W. Garrett Owen and Roberto G. Lopez

Under low-light greenhouse conditions, anthocyanin pigmentation in vegetative tissues of red- or purple-leafed floricultural crops is not fully expressed and, consequently, plants are not as visually appealing to consumers. Our objective was to quantify the effect of end-of-production (EOP; before shipping) supplemental lighting (SL) of different light sources, qualities, and intensities on foliage color of geranium (Pelargonium ×hortorum L.H. Bailey ‘Black Velvet’) and purple fountain grass [Pennisetum ×advena Wipff and Veldkamp (formerly known as Pennisetum setaceum Forsk. Chiov. ‘Rubrum’)]. Plants were finished under early (Expt. 1) and late (Expt. 2) seasonal greenhouse ambient solar light and provided with 16 hours of day-extension lighting from low-intensity light-emitting diode (LED) lamps [7:11:33:49 blue:green:red:far-red light ratio (%); control] delivering 4.5 μmol·m−2·s−1, or 16 hours of EOP SL from high-pressure sodium (HPS) lamps delivering 70 μmol·m−2·s−1, or LED arrays (100:0, 87:13, 50:50, or 0:100 red:blue) delivering 100 μmol·m−2·s−1, or 0:100 red:blue LEDs delivering 25 or 50 μmol·m−2·s−1. Geranium and fountain grass chlorophyll content and leaf color were estimated using a SPAD-502 chlorophyll meter and Minolta tristimulus colorimeter, respectively. Relative chlorophyll content (RCC) and foliage L* (lightness), C* (chroma; a measure of saturation), and h° (hue angle; a measure of tone) values were significantly influenced by EOP SL and days of exposure. Generally, RCC of geranium and fountain grass increased from 3 to 14 days of exposure to EOP SL from HPS lamps and LEDs delivering 100 μmol·m−2·s−1. Under low daily light integrals (DLIs) [8.6 mol·m−2·d−1 (geranium) and 9.4 mol·m−2·d−1 (purple fountain grass)] EOP SL providing 100 μmol·m−2·s−1 of 100:0, 87:13, 50:50, or 0:100 red:blue light for ≥14 days resulted in lower L* (darker foliage), C* (saturated), and h° (orange to violet-red hues). Our data indicate that a minimum of 14 days of EOP SL providing 100 μmol·m−2·s−1 of 50:50 or 0:100 red:blue light enhanced foliage color of geranium and fountain grass leaves when plants were grown under a low greenhouse DLI ≤ 9 mol·m−2·d−1.

Free access

W. Garrett Owen and Roberto G. Lopez

Under low-light greenhouse conditions, such as those found in northern latitudes, foliage of red leaf lettuce (Lactuca sativa L.) varieties is often green and not visually appealing to consumers. Our objective was to quantify the effect of end-of-production (EOP; prior to harvest) supplemental lighting (SL) of different sources and intensities on foliage color of four red leaf lettuce varieties, ‘Cherokee’, ‘Magenta’, ‘Ruby Sky’, and ‘Vulcan’. Plants were finished under greenhouse ambient solar light and provided with 16-hours of day-extension lighting from low intensity light-emitting diode (LED) lamps [7:11:33:49 blue:green:red:far red (control)] delivering 4.5 μmol·m−2·s−1, or 16-hours of EOP SL from high-pressure sodium (HPS) lamps delivering 70 μmol·m−2·s−1, or LED arrays [100:0, 0:100, or 50:50 (%) red:blue] delivering 100 μmol·m−2·s−1, or 0:100 blue LEDs delivering 25 or 50 μmol·m−2·s−1. Relative chlorophyll content (RCC) and foliage L* (lightness), and chromametric a* (change from green to red) and b* (change from yellow to blue) values were significantly influenced by EOP SL and days of exposure. Generally, RCC of all varieties increased from day 3 to 14 when provided with EOP SL from the HPS lamps and LEDs delivering 100 μmol·m−2·s−1. End-of-production SL providing 100 μmol·m−2·s−1 of 100:0, 0:100, or 50:50 red:blue light for ≥5 days resulted in increasing a* (red) and decreasing L* (darker foliage), b* (blue), and h° (hue angle; a measure of tone) for all varieties. Our data suggests that a minimum of 5 days of EOP SL providing 100 μmol·m−2·s−1 of 100:0, 0:100, or 50:50 red:blue light enhanced red pigmentation of ‘Cherokee’, ‘Magenta’, ‘Ruby Sky’, and ‘Vulcan’ leaves when plants are grown under a low greenhouse daily light integrals (DLIs) <10 mol·m−2·d−1.

Restricted access

W. Garrett Owen and Roberto G. Lopez

Variability in outdoor daily temperatures and photosynthetic daily light integrals (DLIs) from early spring to late fall limits the ability of propagators to accurately control propagation environments to consistently callus, root, and yield compact herbaceous perennial rooted liners. We evaluated and compared the effects of sole-source lighting (SSL) delivered from red (R) and blue (B) light-emitting diodes (LEDs) to supplemental lighting (SL) provided by high-pressure sodium (HPS) lamps on herbaceous perennial cutting morphology, physiology, and growth during callusing and initial rhizogenesis. Cuttings of perennial sage (Salvia nemorosa L. ‘Lyrical Blues’) and wand flower (Gaura lindheimeri Engelm. and A. Gray ‘Siskiyou Pink’) were propagated in a walk-in growth chamber under multilayer SSL provided by LEDs with [R (660 nm)]:[B (460 nm)] light ratios (%) of 100:0 (R100:B0), 75:25 (R75:B25), 50:50 (R50:B50), or 0:100 (R0:B100) delivering 60 µmol·m−2·s–1 for 16 hours (total DLI of 3.4 mol·m−2·d−1). In a glass-glazed greenhouse (GH control), cuttings were propagated under ambient solar light and day-extension SL provided by HPS lamps delivering 40 µmol·m−2·s–1 to provide a 16-hour photoperiod (total DLI of 3.3 mol·m−2·d−1). At 10 days after sticking cuttings, callus diameter and rooting percentage were similar among all light-quality treatments. For instance, callus diameter, a measure of growth, of wand flower cuttings increased from an average 1.7 mm at stick (0 day) to a range of 2.7 to 2.9 mm at 10 days after sticking, regardless of lighting treatment. Relative leaf chlorophyll content was generally greater under SSL R75:B25 or R50:B50 than all other light-quality treatments. However, stem length of perennial sage and wand flower cuttings propagated under SSL R50:B50 at 10 days were 21% and 30% shorter and resulted in 50% and 8% greater root biomass, respectively, compared with those under SL. The herbaceous perennial cuttings propagated in this study under SSL R50:B50 were of similar quality or more compact compared with those under SL, indicating that callus induction and initial rooting can occur under LEDs in a multilayer SSL propagation system.

Restricted access

W. Garrett Owen, Qingwu Meng and Roberto G. Lopez

Under natural short days, growers can use photoperiodic lighting to promote flowering of long-day plants and inhibit flowering of short-day plants. Unlike traditional lamps used for photoperiodic lighting, low-intensity light-emitting diode (LED) lamps allow for a wide array of adjustable spectral distributions relevant to regulation of flowering, including red (R) and white (W) radiation with or without far-red (FR) radiation. Our objective was to quantify how day-extension (DE) photoperiodic lighting from two commercially available low-intensity LED lamps emitting R + W or R + W + FR radiation interacted with daily light integral (DLI) to influence stem elongation and flowering of several ornamental species. Long-day plants [petunia (Petunia ×hybrida Vilm.-Andr. ‘Dreams Midnight’) and snapdragon (Antirrhinum majus L. ‘Oh Snap Pink’)], short-day plants [african marigold (Tagetes erecta L. ‘Moonsong Deep Orange’) and potted sunflower (Helianthus annuus L. ‘Pacino Gold’)], and day-neutral plants [pansy (Viola ×wittrockiana Gams. ‘Matrix Yellow’) and zinnia (Zinnia elegans Jacq. ‘Magellan Cherry’)] were grown at 20/18 °C day/night air temperatures and under low (6–9 mol·m−2·d−1) or high (16–19 mol·m−2·d−1) seasonal photosynthetic DLIs from ambient solar radiation combined with supplemental high-pressure sodium lighting and DE LED lighting. Photoperiods consisted of a truncated 9-hour day (0800–1700 hr) with additional 1-hour (1700–1800 hr, 10 hours total), 4-hour (1700–2100 hr, 13 hours total), or 7-hour (1700–2400 hr, 16 hours total) R + W or R + W + FR LED lighting at 2 μmol·m−2·s−1. Days to visible bud, plant height at first open flower, and time to first open flower (TTF) of each species were influenced by DLI, lamp type, and photoperiod though to different magnitudes. For example, plant height of african marigold and potted sunflower at first open flower was greatest under R + W + FR lamps, high DLIs, and 16-hour photoperiods. Petunia grown under R + W lamps, high DLI, and 10- and 13-hour photoperiods were the most compact. For all species, TTF was generally reduced under high DLIs. For example, regardless of the lamp type, flowering of african marigold occurred fastest under a high DLI and 10-hour photoperiod. Flowering of petunia and snapdragon occurred fastest under a high DLI, R + W + FR lamps, and a 16-hour photoperiod. However, only under high DLIs, R + W or R + W + FR lamps were equally effective at promoting flowering when used to provide DE lighting. Our data suggest that under low DLIs, flowering of long-day plants (petunia and snapdragon) occurs more rapidly under lamps providing R + W + FR, whereas under high DLIs, flowering is promoted similarly under either R + W or R + W + FR lamps.

Full access

W. Garrett Owen, Alyssa Hilligoss and Roberto G. Lopez

Production and market value of U.S. grown specialty cut flowers has increased over the past several years due to stem quality issues related to long-distance transport, regional proximity to market centers, and consumer’s willingness to purchase locally. Cut flowers are traditionally grown in field or greenhouse environments; however, high tunnels provide an alternative production environment and a number of cultural and economic advantages. Specialty cut flower species ‘Campana Deep Blue’ bellflower (Campanula carpatica), bells of ireland (Moluccella laevis), ‘Bombay Firosa’ celosia (Celosia cristata), ‘Amazon Neon Purple’ dianthus (Dianthus barbatus), ‘Fireworks’ gomphrena (Gomphrena pulchella), ‘Vegmo Snowball Extra’ matricaria (Tanacetum parthenium), and ‘Potomac Lavender’ snapdragon (Antirrhinum majus) were planted in both field and high tunnel environments during the late season (early summer) in the midwestern United States. Compared with field production, high tunnel production yielded 9.1 stems/m2 (75%) for bells of ireland and 9.5 cm (15%), 16.8 cm (16%), 6.7 cm (44%), and 6.3 cm (19%) longer stems for bells of ireland, celosia, gomphrena, and matricaria, respectively. Additionally, stem length and caliper was greatest for high tunnel–grown bells of ireland, celosia, and dianthus. Our results indicate that late-season planting and production in a high tunnel is suitable for most of the species we investigated.

Full access

W. Garrett Owen, Brian E. Jackson, Brian E. Whipker and William C. Fonteno

Processed pine (Pinus sp.) wood has been investigated as a component in horticultural substrates (greenhouse and nursery) for many years. Specifically, pine wood chips (PWC) have been uniquely engineered/processed into a nonfiberous blockular particle size, suitable for use as a substrate aggregate. The purpose of this research was to determine if paclobutrazol drench efficacy is affected by PWC used as a substitute for perlite in a peat-based substrate. Paclobutrazol drench applications of 0, 1, 2, and 4 mg/pot were applied to ‘Pacino Gold’ sunflower (Helianthus annuus); 0.0, 0.25, 0.50, and 1.0 mg/pot to ‘Anemone Safari Yellow’ marigold (Tagetes patula); and 0.0, 0.125, 0.25, and 0.50 mg/pot to ‘Variegata’ plectranthus (Plectranthus ciliates) grown in sphagnum peat-based substrates containing 10%, 20%, or 30% (by volume) perlite or PWC. Efficacy of paclobutrazol drenches for controlling growth of all three species was unaffected by substrate composition. We concluded that substituting PWC for perlite as an aggregate in peat-based substrates should not reduce paclobutrazol drench efficacy, variability in PWC products indicates that efficacy should be tested before large-scale use. The variability results from wood components not being engineered and processed the same across manufacturers, meaning that they are often incapable of improving/influencing the physical and chemical behavior of a substrate similarly.

Full access

W. Garrett Owen, Brian E. Jackson, Brian E. Whipker and William C. Fonteno

Processed pine wood (Pinus sp.) has been investigated as a component in greenhouse and nursery substrates for many years. Specifically, pine wood chips (PWC) have been uniquely engineered/processed into a nonfiberous blockular particle size, suitable for use as a substrate aggregate. In container substrates, nitrogen (N) tie-up during crop production is of concern when substrates contain components with high carbon (C):N ratios, like that of PWC that are made from fresh pine wood. The objective of this research was to compare the N requirements of plants grown in sphagnum peat–based substrates amended with perlite or PWC. Fertility concentrations of 100, 200, or 300 mg·L−1 N were applied to ‘Profusion Orange’ zinnia (Zinnia ×hybrida) and ‘Moonsong Deep Orange’ marigold (Tagetes erecta) grown in sphagnum peat–based substrates containing 10%, 20%, or 30% (by volume) perlite or PWC. Zinnia plant substrate solution electrical conductivity (EC) was not influenced by percentage of perlite or PWC. Perlite-amended substrates fertilized with 200 mg·L−1 N for growing zinnia, maintained a constant EC within optimal levels of 1.0 to 2.6 mS·cm−1 from 14 to 42 days after planting (DAP), and then EC increased at 49 DAP. In substrates fertilized with 100 and 300 mg·L−1 N, EC levels steadily declined and then increased, respectively. Zinnia plants grown in PWC-amended substrates fertilized with 200 mg·L−1 N maintained a constant EC within the optimal range from 14 to 49 DAP. Marigold substrate solution EC was only influenced by N concentration and followed a similar response to zinnia substrate solution EC. Zinnia and marigold substrate solution pH was influenced by N concentration and generally decreased with increasing N concentration. Plant growth and shoot dry weight were similar when fertilized with 100 and 200 mg·L−1 N. According to this study, plants grown in PWC-amended substrates fertilized with 100 to 200 mg·L−1 N can maintain adequate substrate solution pH and EC levels and sustain plant growth with no additional N supplements. Pine wood chips are engineered and processed to specific sizes and shapes to be functional as aggregates in a container substrate. Not all wood components are designed or capable of improving/influencing the physical and chemical behavior of a substrate the same. On the basis of the variability of many wood components being developed and researched, it is suggested that any and all substrate wood components not be considered the same and be tested/trialed before large-scale use.