Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W. Casey Reynolds x
Clear All Modify Search

Turfgrass renovations commonly involve changing cultivars or species that are better suited for a given setting. Common bermudagrass [Cynodon dactylon (L.) Pers.] is a perennial turfgrass that is difficult to eradicate before renovations, and poses contaminant concerns for the subsequent stand. Dazomet is a granular soil fumigant that has activity on various pests, including common bermudagrass. Field research was conducted from 2015 to 2016 in Raleigh, NC and College Station, TX to evaluate dazomet treatments including various combinations of soil incorporation (irrigation- or tillage-incorporated) and sealing (tarp or no tarp) methods, application rates [291, 291 followed by (fb) 291, 468, or 583 kg·ha−1], and fluazifop-P [fluazifop (0.4 kg·ha−1)] + glyphosate (2.8 kg·ha−1 acid equivalent) application(s) for established common bermudagrass control. Overall, treatments required fluazifop + glyphosate before dazomet application for acceptable control (>90% cover reduction) at 42 and 46 weeks after initial treatment (WAIT) in Texas and North Carolina, respectively. Soil-incorporation results varied by location, with dazomet application (583 kg·ha−1) fb tillage resulting in ≥88% cover reduction across locations, while acceptable control from irrigation incorporation was only observed in North Carolina. Tarping did not improve efficacy when tillage incorporation at the maximum label application rate provided acceptable control, suggesting practitioners may eliminate this procedure. Information from this research will aid turfgrass managers in developing cost-effective, ecologically sound common bermudagrass eradication programs before renovations.

Full access

Bermudagrass, Cynodon spp. is one of the most commonly grown turfgrass genera in the southern United States having excellent drought tolerance, but poor tolerance to shade. Developing cultivars tolerant to shade would allow bermudagrass to become more prevalent in home lawns or other recreational areas in the southeast, where trees dominate the landscape. In this field study, nine accessions collected from Pretoria, South Africa were evaluated for their ability to grow under shade with varying fertility treatments. These accessions and cultivars ‘Celebration’, ‘TifGrand’, and ‘Tifway’ were evaluated under 0%, 63%, and 80% continuous shade during 2011–12. For both years, significant differences among shade levels, genotypes, and the interaction of the two were observed. As expected, the progression from 0% to 63% to 80% shade reduced normalized difference vegetation index (NDVI), percent turfgrass cover (TC), and turf quality (TQ) readings for all accessions. Some genotypes, however, were able to maintain adequate quality and aggressiveness under 63% shade. ‘Celebration’, WIN10F, and STIL03 performed better than ‘Tifway’ (P ≤ 0.05), the susceptible control. Overall, our results indicate that there are promising genotypes among the bermudagrass materials collected from South Africa. These accessions represent additional sources of shade hardiness to be used in bermudagrass breeding. Furthermore, higher nitrogen fertility provided increased NDVI and TQ in some instances suggesting an added benefit of fertility under low-light conditions. However, the increased economic value attributed to the added inputs associated with these increases is outweighed by the low impacts offered.

Free access