Search Results
Nitrogen effects on `Beauregard' sweetpotato were investigated from 1992 to 1995 at the LSU Sweet Potato Research Station to determine the optimal rate and timing of nitrogen application. Five rates of preplant nitrogen were applied: 0, 33.6, 50.4, 67.2, and 84 kg·ha–1. Increasing the rate of nitrogen to 50.4 kg·ha–1 significantly increased marketable yield. Five treatments of pretransplant/sidedress nitrogen (kg·ha–1) were applied: 0/0, 50.4/0, 0/50.4, 33.6/16.8, and 16.8/33.6. Withholding nitrogen resulted in significantly more storage root initiation 21 days after transplanting (DAT). Application of 50.4 kg N/ha 21 DAT resulted in significantly greater yields of US #1 sweetpotatoes in 1992 and 1995 and equaled the pretransplant nitrogen treatment in 1993 and 1994.
Abstract
Hardwood cuttings of ‘Tifblue’ rabbiteye blueberry (Vaccinium ashei Reade) rooted well in peat and a mix of peat and pine bark. Indolebutyric acid (IBA), chilling, and IB A plus chilling reduced percent rooting, but chilling alone and with IBA increased root volume over controls. Summer potting of cuttings increased root development but decreased total number of surviving plants.
Phosphorus (P) fertilizers with high water-solubility are often applied in excessive amounts to porous horticultural substrates to produce high-quality plants. As a result, high P losses during containerized plant production have presented an environmental challenge to responsible growers. Poultry litter ash (PLA), a byproduct of bioenergy production, contains P concentrations comparable to conventional P fertilizers but is characterized as having lower water-solubility. Therefore, a series of experiments were conducted to characterize effects of PLA on container-plant growth and P leaching. PLA was compared with superphosphate (SP), a highly water-soluble P source, in ratios of 0:100, 25:75, 50:50, 75:25, and 100:0 (SP:PLA) in the production of Lantana camara L. ‘New Gold’. In 2011, lantana fertilized with higher ratios of PLA exhibited slower growth with lower shoot and root biomasses compared with 100% SP-fertilized lantana. However, in 2012, differences in fertilizer treatments lessened, with 100% PLA-fertilized lantana exhibiting 14% less shoot biomass and no differences in root biomass compared with 100% SP-fertilized lantana. Measurement of shoot:root biomass, a common indicator of P deficiency, was not different between any P treatments in 2011 or 2012. This indicates root growth was most likely the driving factor in P-treatment effects on shoot biomass in each year of the experiment. During a postproduction field trial, no differences in growth or biomass were observed between lantana previously fertilized with P, regardless of source. However, application of PLA as the single P source reduced dissolved reactive P (DRP) concentrations in leachate >90% and total P (TP) mass losses 69% compared with 100% SP-fertilized lantana during container production, with P treatments reducing DRP and TP losses as PLA ratios increased. Therefore, the benefit of P-loss reduction during container production achieved through PLA application may warrant the acceptance of slightly smaller plants or extending production cycles.
Bermudagrass, Cynodon spp. is one of the most commonly grown turfgrass genera in the southern United States having excellent drought tolerance, but poor tolerance to shade. Developing cultivars tolerant to shade would allow bermudagrass to become more prevalent in home lawns or other recreational areas in the southeast, where trees dominate the landscape. In this field study, nine accessions collected from Pretoria, South Africa were evaluated for their ability to grow under shade with varying fertility treatments. These accessions and cultivars ‘Celebration’, ‘TifGrand’, and ‘Tifway’ were evaluated under 0%, 63%, and 80% continuous shade during 2011–12. For both years, significant differences among shade levels, genotypes, and the interaction of the two were observed. As expected, the progression from 0% to 63% to 80% shade reduced normalized difference vegetation index (NDVI), percent turfgrass cover (TC), and turf quality (TQ) readings for all accessions. Some genotypes, however, were able to maintain adequate quality and aggressiveness under 63% shade. ‘Celebration’, WIN10F, and STIL03 performed better than ‘Tifway’ (P ≤ 0.05), the susceptible control. Overall, our results indicate that there are promising genotypes among the bermudagrass materials collected from South Africa. These accessions represent additional sources of shade hardiness to be used in bermudagrass breeding. Furthermore, higher nitrogen fertility provided increased NDVI and TQ in some instances suggesting an added benefit of fertility under low-light conditions. However, the increased economic value attributed to the added inputs associated with these increases is outweighed by the low impacts offered.
East African banana (Musa sp.) breeding efforts have focused mainly on enhancing ‘Matooke’ productivity through the development of high-yielding, pathogen-resistant cultivars with adequate stability to contribute to regional food security. Before a breeding program can recommend promising cultivars for release, they must pass the sensory screens; be evaluated in the target population environments; and the data analyzed for yield, adaptability, and stability. Twenty-four primary and secondary triploid hybrids [NARITA (N)] derived from ‘Matooke’ bananas, six triploid local ‘Matooke’ cultivars, and one exotic cultivar were evaluated for their yield, adaptability, and stability across the East African region at three highland sites in Uganda’s western and central regions, as well as at three sites in Tanzania’s northeastern and southern highlands regions, from 2016–19. A randomized complete block design with four replicates was used for multisite trials. The mixed-model restricted maximum likelihood/best linear unbiased prediction approach, along with additive main effect multiplicative interaction model biplots, were used to dissect and visualize genotype-by-environment patterns. Following the likelihood ratio test, both genotype and interaction effects were highly significant, confirming the influence of genotype and site heterogeneity for selecting specific and broadly adapted cultivars. N23 had the greatest yield across all sites associated with adaptability and stability, outperforming the overall mean yield of all genotypes by 34.2%. In Tanzania, N27 (second), N7 (third), N18 (fourth), N4 (fifth), N12 (sixth), and N13 (seventh); and in Uganda, N17 (second), N18 (third), N2 (fourth), N8 (fifth), N13 (sixth), N12 (seventh), N4 (eighth), and N24 (ninth) demonstrated good adaptability and stability, as well as high yield. Furthermore, the fungal pathogen Pseudocercospora fijiensis had no significant effect (P > 0.05) on yield, stability, and adaptability of the hybrids. As a result, they can be introduced into areas where black leaf streak constrains banana production significantly and threatens farmers’ livelihoods. The average site yield potential ranged from 9.7 to 24.3 t⋅ha–1 per year. The best discriminating sites for testing breeding clones were Lyamungo in Tanzania and Sendusu in Uganda. Hence, these testing sites are recommended as ideal examples of locations for selecting superior genotypes.