Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Victor Garcia de Cortázar x
Clear All Modify Search

Three different parameters were tested to estimate yield in `Royal Gala' apples. These are: a) parameters related to crop load—fruits per tree, fruits per cm2 of branch cross-sectional area, and fruits per hectare; b) parameters related with PFD interception: average fraction of PFD intercepted, total PFD intercepted during the season; and c) combination of the parameters a) and b). The data set was composed of measurements of PFD interception once a month and of yield components on various commercial apple orchards of the variety `Royal Gala' in the central zone of Chile between 2003 and 2006. The orchards were managed for high production, but there were differences of plantation distance, age, and size between them. Also, inside the orchard there were differences between trees. For the trees studied, there were variations of a factor of 10 for crop load, branch cross-sectional area, and tree size estimated as fractional interception of PFD at the beginning of the season. In spite of the big differences between trees, simple equations were fitted between yield and load parameters with coefficients of determination >0.95. Research funded by FONDECYT-Chile grant 1930695.

Free access

Several field experiments to assess the effect of tree size and crop load on fruit size and yield were conducted in a `Ross' cling peach orchard and in three nectarine orchards of different harvest seasons in Chile. Trees were randomly selected in each orchard and then hand-thinned at the beginning of pit hardening to a wide range of crop loads. The fraction of above-canopy photosynthetically active radiation intercepted by the canopy (PARi) was determined at harvest and all fruits were counted, weighted, and average fruit weight calculated. Cropload and yield were expressed in terms of fraction of PARi. Data on farm gate prices for export fruit of different sizes and export dates were obtained from a Chilean export company. For each orchard, the relationship between cropload and fruit size or cropload and yield efficiency was assessed by regression analysis. Fruit size distribution was calculated from adjusted fruit size assuming a normal fruit size distribution and valued according to shipment date and price. Using crop load as a covariate, fruit size adjusted for cropload was calculated for each nectarine orchard. Differences in adjusted fruit size and yield efficiency were detected among cultivars. Predicted crop value, normalized in terms of PARi intercepted, was calculated for all the cultivars. Large differences in predicted crop value were found for early, mid-season, and late-ripening nectarines. The early and late ripening cultivars showed the highest predicted crop value, especially at lower crop loads and larger fruit sizes. On the other hand, `Ross' cling peach showed its highest crop value at a medium crop load with high yield and relatively small fruit size. (Funded by FONDECYT grant 1930695.)

Free access

Productivity of irrigated prickly pear cactus [Opuntia ficus-indica (L.) Miller] was studied over 3 years in central Chile using two planting densities. A low-density planting (0.25 plants/m2), traditionally favored for fruit production, had maximal fruit productivity in the 2nd year (6 Mg dry weight/ha per year). A high-density planting (24 plants/m2), which assured almost full interception of incident solar radiation, led to an extremely high shoot dry-weight productivity (50 Mg·ha-1·year-1) in the 2nd year and maximal fruit productivity (6 Mg·ha-1·year-1) in the 3rd year. Cladode dry weight tended to increase with cladode surface area. However, fruit production did not occur until the dry weight per cladode exceeded the minimum dry weight for a particular cladode surface area by at least 33 g. The year-to-year variation in fruit production apparently reflected variations in such excess dry weight and, hence, in the storage reserves of individual cladodes.

Free access

Several field experiments to assess the effect of tree size and crop load on fruit size and yield efficiency were conducted in cling peach and nectarine orchards of different harvest seasons in Chile. Trees were randomly selected in each orchard and then hand-thinned at the beginning of pit hardening to a wide range of crop loads. The fraction of above-canopy photosynthetically active radiation (PAR) intercepted by the canopy (PAR i) was determined at harvest. All fruits were counted and weighed and average fruit weight calculated. Crop load and yield were normalized by tree size measured by intercepted PAR i. For each orchard, the relationship between crop load and fruit size or crop load and yield efficiency was assessed by regression analysis. Fruit size distribution was calculated from fruit size adjusted for fruit load assuming a normal fruit size distribution and valued according to shipment date and price obtained from a Chilean export company. Using crop load as a covariate, fruit size adjusted for crop load was compared for nectarine and peach cultivars. Fruit size adjusted for fruit load and yield efficiency was greater with late season cultivars than the early or midseason cultivars. Predicted crop value (PCV), normalized in terms of PAR intercepted, was calculated for all the cultivars. Large differences in predicted crop value were found for early, midseason, and late ripening nectarines. Early and late ripening cultivars had the highest predicted crop value, especially at lower crop loads and larger fruit sizes. The early season cultivars had high crop value as a result of higher fruit prices, whereas the late season cultivar had high crop value as a result of higher production. With cling peaches, the early season cultivar ‘Jungerman’ had a lower predicted crop value than the late season cultivars ‘Ross’ and ‘Davis’. For cling peaches, the highest PCV was achieved at a relatively high crop load with high yield and small fruit size.

Free access