Search Results
You are looking at 1 - 10 of 14 items for
- Author or Editor: Vicki McCracken x
Over 60 rosaceous crop breeding programs exist in North America, but no information has been available on which traits are targeted for selection or how breeders make such decisions. We surveyed all active rosaceous fruit breeding programs in the United States and Canada to determine: 1) the relative importance of over 50 plant traits that breeders select for 2) the likelihood of selection for the most important traits; and 3) the factors influencing breeders’ decisions. A double-bounded Tobit model was used to investigate the effect of supply chain parties, technical and socioeconomic challenges, and crop characteristics on the likelihood of selection for trait clusters. We found that consumer-driven forces positively impact the likelihood of selection for traits more than producer forces and a breeder’s own experience. Technical factors are as important as socioeconomic factors but less important than market-related factors. Our findings provide the first ever evidence that a socioeconomic approach in specialty crop breeding programs can contribute to an improved understanding of the effects of different supply chain factors on breeding programs’ trait priority setting.
Marker-assisted selection (MAS) use in breeding programs allows for examination of seedlings at an early stage before accumulation of high field costs. However, introducing MAS into a breeding program implies additional costs and uncertainties about effective incorporation. Previous simulations in apple (Malus ×domestica) have shown cost-effective applications of MAS. To further evaluate MAS cost-effectiveness in perennial crops, we conducted a cost-effectiveness analysis examining MAS in an upper midwestern U.S. peach (Prunus persica) breeding program. Breeding program procedures and associated costs were collected and used as input into spreadsheet-based simulations of the breeding program. Simulations compared a conventional breeding program to MAS with varying cull rates of low, medium, and high at multiple stages in the breeding cycle. Cost-effective MAS implementation was identified at the end of seedling trials with a break-even cull rate of 4%. These results inform breeders of cost-effectiveness of MAS use in a peach breeding program.
This study investigates U.S. peach producers’ willingness to pay (WTP) for potential improvement of peach fruit attributes. Data were collected from 124 U.S. peach producers. The choice experiment and socioeconomic data were analyzed using mixed logit (ML) models to estimate the producer WTP and preferences for peach attributes. The results indicate that the WTP for attribute values vary across peach producers from different production regions (California and eastern United States), with different selling targets (fresh and processed) and different orchard sizes (smaller or larger than 15 acres). These results provide useful information for peach breeders in prioritizing traits in their breeding programs.
We conducted choice experiments with both strawberry producers and consumers. Consumer and producer willingness to pay (WTP) for the fruit attributes were estimated using mixed logit models. Through simulation using the mixed logit model results, we derived the market equilibrium prices, supply and demand curve, as well as quantities demanded and supplied for every fruit attribute. We found the highest equilibrium price was for strawberry internal color followed by flavor. Strawberry breeders can use the information when setting breeding targets, allocating resources appropriately during their breeding process and focusing on the improvement of attributes that produce the highest social surplus and total revenue.
DNA-informed breeding techniques allow breeders to examine individual plants before costly field trials. Previous studies with tree fruits such as apple (Malus ×domestica) and peach (Prunus persica) have identified cost-effective implementation of DNA-informed techniques. However, it is unclear whether breeding programs for herbaceous perennials with 1- to 2-year juvenile phases benefit economically from these techniques. In this study, a cost-benefit analysis examining marker-assisted selection (MAS) in a Pacific northwest U.S. strawberry (Fragaria ×ananassa) breeding program was conducted to elucidate the effectiveness of DNA-informed breeding in perennial crops and explore the capabilities of a decision support tool. Procedures and associated costs were identified to create simulations of the breeding program. Simulations compared a conventional breeding program to a breeding program using MAS with low (12.5%), medium (25%), and high (50%) removal rates, and examined different scenarios where MAS had diminishing power to remove individuals as selections reenter the breeding cycle as parent material. We found that MAS application under current costs was not cost-effective in the modeled strawberry program when applied at the greenhouse stage, but cost-effectiveness was observed when MAS was applied at the end of the seedling trials before clonal trials with a removal rate of 12.5%.
Pacific Northwest North America (PNW) strawberry (Fragaria ×ananassa) growers are transitioning away from the processing to fresh-market sector in response to changes in local and regional markets. However, many of the regional cultivars bred for the PNW were not developed for the fresh market. There is a need to gain a better understanding of growers’ priority traits and their relative importance to enable breeders, researchers, and extension specialists to better serve this growing industry. The objective of this study was to provide such information on strawberry genetic traits of importance for the changing strawberry industry in the PNW with an emphasis on fresh-market production. Six surveys were administered to 32 growers representing ≈53%, 23%, and 15% of the total strawberry acreage in Oregon, Washington, and British Columbia, Canada, respectively. Growers ranked the relative importance of five plant and fruit traits, including fruit quality, disease resistance/tolerance, insect pest resistance/tolerance, plant stress tolerance, and other plant factors. Information about target markets, marketing channels, and general grower characteristics were also obtained. Whereas overall responses differed among the surveyed locations, fruit quality was considered the most important trait across all locations, with disease resistance/tolerance as the second most important. Specific fruit quality traits of importance were external appearance free of defects, skin color, size, sweetness, firmness, and flavor, whereas phytonutrients, seed color, and low drip loss after freezing and thawing were less important. Plant stress tolerance was identified as less important for strawberry growers in all locations. Results also showed many growers have already or are in the process of transitioning to the fresh market. Information obtained from this survey can be leveraged to target important breeding traits for fresh-market strawberry breeders within the PNW. Results also suggest priority areas of synergistic research and outreach activities to help growers achieve high fruit quality while managing diseases for fresh-market producers.
Developing new cherry cultivars requires breeders to be aware of existing and emerging needs throughout the supply chain, from producer to consumer. Because breeding programs in perennial crop plants like sweet and tart cherries require both extended time and extensive resources, understanding and targeting priority traits is critical to improve the efficiency of breeding programs. This study investigated the relative importance of fruit and tree traits to sweet and tart cherry producers using ordered probit models. Tart cherry producers considered productivity and fruit firmness to be the most important traits, whereas sweet cherry producers regarded fruit size, fruit flavor, fruit firmness, freedom from pitting, and powdery mildew resistance as important traits. The location of producers’ orchards and their demographic backgrounds influenced their perceptions of the importance of traits. Our findings provide a quantitative basis to reinforce existing priorities of breeding programs or suggest new targets.
Incorporating DNA-informed breeding techniques can improve selection efficiency for desired traits as compared with conventional breeding methods that do not use DNA-informed techniques. Incorporation of DNA technologies requires additional costs associated with reagents, equipment, and labor. To elucidate the cost-effectiveness of DNA-informed breeding in perennial crops with multiple years per generation, we conducted a cost–benefit analysis examining incorporation of marker-assisted selection (MAS), a type of DNA-informed breeding, applied to an apple breeding program. Annual operational costs for a midwest apple breeding program were used to develop a simulation with inputs including itemized costs and per unit costs for procedures at each breeding program stage. Simulations compared costs of MAS breeding techniques to conventional breeding methods to identify the break-even point (BEP) where cost-savings associated with MAS equals the accrued additional costs. Additional sensitivity analyses were conducted to examine changes in laboratory costs, seedling maintenance costs, and seedling evaluation costs. We found the BEP for this program occurs when MAS results in a removal rate of 13.18%, and changes to other costs (i.e., maintenance costs) result in a smaller percent decrease to the overall program budget. Our findings are useful to perennial crop breeding programs in which managers are considering incorporating DNA-informed breeding techniques.
Rosaceous crops (e.g., almond, apple, apricot, caneberry, cherry, pear, peach, plum, rose, and strawberry) contribute to human health and well-being and collectively constitute the economic backbone of numerous North American rural communities. We conducted a survey of U.S. and Canadian rosaceous fruit crop breeders to assess priority setting in their programs, sources of information for setting priorities, and challenges in making technical and management decisions. Input from producers and consumers was most important in establishing breeding program targets, although respondents’ direct interaction with consumers was not frequent. Breeding targets and management decisions were mostly associated with the breeder’s type of organization, scope and range of crops, and intended use of the crop (fresh, processed, or both).
Consumer preferences for attributes of fresh peach fruit in the United States are largely unknown on a national basis. We used a choice experiment to explore market segmentation based on consumer heterogeneous preference for fruit attributes including external color, blemish, firmness, sweetness, flavor, and price. We collected the data using an online survey with 800 U.S. consumers. Using a latent class logit model, we identified three segments of consumers differing by different sets of preferred quality attributes: experience attribute-oriented consumers, who valued fruit quality (48.8% of the sample); search attribute-oriented consumers, who valued fruit appearance (33.7% of the sample); and balanced consumers, who considered search attributes and experience attributes but who valued each in a balanced way (17.5% of the sample). Each group demonstrated differentiated demographics and purchasing habits. The results have important marketing implications for peach breeders and suppliers.