Search Results
Previous work on citrus trees has shown that an interstock, grafted between the rootstock and scion combination, not only can improve tree growth, longevity, fruit production, and quality, but also can increase salinity tolerance. This research was designed to evaluate flooding responses of 2-year-old ‘Verna’ lemon trees [Citrus limon (L.) Burm.; VL] either grafted on ‘Sour’ orange (C. aurantium L.; SO) rootstock without an interstock (VL/SO) or interstocked with ‘Valencia’ orange (C. sinensis Osbeck;VL/V/SO) or with ‘Castellano’ orange (C. sinensis Osbeck; VL/C/SO). Well-watered and fertilized trees were grown under greenhouse conditions and half were flooded for 9 days. At the end of the flooded period, leaf water relations, leaf gas exchange, chlorophyll fluorescence parameters, mineral nutrition, organic solutes, and carbohydrate concentrations were measured. Leaf water potential (Ψw), relative water content (RWC), net CO2 assimilation rate (ACO2), and stomatal conductance (g S) were decreased by flooding in all the trees but the greatest decreases occurred in VL/V/SO. The Ci/Ca (leaf internal CO2 to ambient CO2 ratio), Fv /Fo (potential activity of PSII) and Fv /Fm (maximum quantum efficiency) ratios were similar in flooded and non-flooded VL/SO and VL/C/SO trees but were decreased in VL/V/SO trees by flooding. Regardless of interstock, flooding increased root calcium (Ca), iron (Fe), copper (Cu), and manganese (Mn) concentration but decreased nitrogen (N) and potassium (K) concentration. Based on the leaf water relations, gas exchange, and chlorophyll parameters, ‘Verna’ lemon trees interstocked with ‘Valencia’ orange had the least flooding tolerance. Regardless of interstock, the detrimental effect of flooding in ‘Verna’ lemon trees was the leaf dehydration which decreased ACO2 as a result of non-stomatal factors. Lowered ACO2 did not decrease the leaf carbohydrate concentration. Flooding decreased root starch in all trees but more so in VL/V/SO trees. Sugars were decreased by flooding in roots of interstocked trees but were increased by flooding in VL/SO roots suggesting that the translocation of carbohydrates from shoots to roots under flooded condition was impaired in interstocked trees.
A study was conducted to investigate the morphological, physiobiochemical, enzymatic, and ionic differences among four cultivated citrus (Citrus sp.) rootstocks with different salt tolerances. Two salt-tolerant rootstocks [Rangpur lime (C. limonia) and Rubidoux (C. trifoliata)] and two salt-sensitive rootstocks [Carrizo citrange (Citrus sinensis × C. trifoliata) and Sanchton citrumello (C. trifoliata × C. paradisi)], were subjected to NaCl stress in greenhouse conditions. The 9-month-old plants were exposed to four different NaCl levels (0, 30, 60, or 90 mm) in sand culture for 3 months. Plant biomass (fresh weight, dry weight, root length, shoot length, and leaf thickness), physiological attributes [number of stomata, stomatal size, number of epidermal cells, photosynthesis rate, stomatal conductance (g S), water use efficiency, and transpiration rate]. and ion content (Na+, K+, Ca+2, Mg+2, and Cl–) were adversely affected by salt stress, but salt-tolerant cultivars were comparatively less affected. Salt stress also enhanced antioxidant enzyme activity (superoxide dismutase, catalase, and peroxidase), particularly in salt-tolerant cultivars. The salt-sensitive cultivars accumulated the greatest content of Na+ and Cl– in their leaves, whereas the salt-tolerant cultivars accumulated the greatest content of Na+ and Cl– in their roots, an adaptation to combat the highly saline conditions. Overall, it was concluded that the salt tolerance of rootstocks is associated with a greater antioxidant enzyme activity and differing accumulation patterns of Na+, K+, Cl–, Mg+2, and Ca+2 in leaves and roots; these can be considered potential indicators of a cultivar's sensitivity to salt stress.