Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Valentina Schmitzer x
  • All content x
Clear All Modify Search
Free access

Vlasta Cunja, Maja Mikulic-Petkovsek, Franci Stampar, and Valentina Schmitzer

Using high-performance liquid chromatography/mass spectrometry, leaf and petal phenolic profiles of four rose (Rosa) species (R. canina, R. glauca, R. rubiginosa, R. sempervirens) traditionally used for medicinal purposes and three modern rose cultivars (Rosarium Uetersen, Ulrich Brunner Fils, Schwanensee) were determined. An abundance of phenolic constituents was identified: seven different anthocyanins and 31 flavonols in petals; 30 flavonols, 14 phenolic acids, and their derivatives; 15 flavanols; and 20 hydrolysable tannins in leaves. Additionally, petal color was measured with a colorimeter and regression analysis indicated a strong correlation between color parameter a* and total anthocyanin content. The content and composition of phenolic compounds varied significantly among species and cultivars and plant organs investigated. Distinct differences in the distribution of leaf phenolic compounds were observed, especially between Rosa species and modern rose cultivars. In general, leaves of analyzed species were richer in content of most phenolic groups and individual components compared with cultivars. Multivariate statistical analysis clustered the investigated species and cultivars into three distinct groups. Among species, leaves of R. canina stood out with their high and varied phenolic content. Conversely, leaves of the susceptible cultivar Schwanensee appeared most dissimilar as a result of their low levels of phenolic constituents.

Free access

Valentina Schmitzer, Robert Veberic, Gregor Osterc, and Franci Stampar

The concentration of major anthocyanins, quercetins, catechin, and phenolic acids during flower development of Rosa ×hybrida L. ‘KORcrisett’ was quantified using high-performance liquid chromatography/mass spectrometry. Additionally, the changes in petal color were monitored colorimetrically at four different stages of development (bud, partially open flowers, fully open flowers, senescent flowers) and correlation was calculated between the chromaticity parameters and major/total anthocyanins. Color parameters a*, b*, and h° decreased with the progression of flower development and a*/b* ratio and lightness (L*) increased. In rose petals, a negative trend in the content of major (pelargonidin-3,5-di-O-glucoside, cyanidin-3,5-di-O-glucoside) and minor (pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, peonidin-3-O-glucoside) anthocyanins was observed during flower development. Buds contained almost threefold higher concentrations of pelargonidin-3,5-di-O-glucoside and fourfold higher concentrations of cyanidin-3,5-di-O-glucoside than senescent flowers. Buds also contained significantly more quercetins (quercetin-3-O-rutinoside, quercetin-3-O-glucoside, and quercetin-3-O-rhamnoside), catechin, and phenolic acids (gallic acid, protocatechulic acid, chlorogenic acid, caffeic acid, p-coumaric acid) than flowers of subsequent developmental stages. The most significant differences were observed in the content of gallic acid; buds contained almost sixfold higher values than senescent flowers. Correlation analysis revealed a strong correlation between chromaticity parameters a*, b*, a*/b* ratio, , L*, and major/total anthocyanins with values ranging from 0.60 to –0.84.

Free access

Valentina Schmitzer, Robert Veberic, Gregor Osterc, and Franci Stampar

In the present study, the chemical and morphological status of eight cultivars of groundcover rose (Rosa ×hybrida) with a range of flower colors was investigated. From the methanolic extracts of rose petals collected from flowers at four developmental stages, several phenolic compounds were identified via high-performance liquid chromatography/mass spectrometry, including five anthocyanins, which are especially important for the visual attributes of rose flowers. Colorimetric parameters were also measured and correlated with total anthocyanins and cell sap pH levels. During flower development from bud to senescent stage, a significant trend was detected; lightness (L*) increased, b* decreased in all analyzed roses, and a* decreased in pink and red cultivars. Cell sap pH level increased from bud to senescent petals; fresh weight, dry weight, and water content increased to fully open stage and were then reduced in senescent petals. Total anthocyanin and quercetin content increased from bud stage to fully open flowers, and was decreased in senescent ones. However, the highest content of total phenolics was measured in buds and partially opened flowers, respectively. Three distinct groups were formed according to the content of total anthocyanins and quercetins; white cultivars were most distant from the red ones, which were similar to the pink and light red cultivars.

Free access

Valentina Schmitzer, Maja Mikulic-Petkovsek, Franci Stampar, and Vlasta Cunja

Detailed anthocyanin and flavonol profiles were investigated in three flower segments of four different hybrid primrose (Primula ×polyantha) cultivars, and individual compounds were identified using high-performance liquid chromatography (HPLC)/mass spectrometry system. Chlorophyll a and b and total carotenoids were evaluated spectrophotometrically in the corolla tube (CT), and distal and proximal flower segments, and the color of each segment was assessed with a colorimeter. Chlorophyll b predominated over chlorophyll a in all flower segments, and the highest total chlorophyll levels were found in the CTs. Sixteen different anthocyanins (glycosides of cyanidin, delphinidin, peonidin, petunidin, malvidin, and rosinidin) were identified in red, pink, and blue flower extracts. Distal segments of the red hybrid and proximal segments of the pink hybrid accumulated highest levels of total anthocyanins, and no red pigments were detected in yellow-flowered hybrid primrose. Six groups of flavonols (40 individual compounds in total) were detected in different flower segments of four hybrid primrose cultivars. Yellow primrose was characterized by the greatest diversity of flavonols as it contained four isorhamnetin, five kaempferol, six laricitrin, three myricetin, six quercetin, and six syringetin glycosides. On the other hand, the smallest variety of flavonols was detected in pink hybrids. Total phenolic content (TPC) was lowest in the CT (yellow > red > pink), significantly higher in the proximal flower segment (yellow > red > pink), and highest in the distal part of the primrose petal (yellow > pink > red).