Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: V.P. Grubinger x
Clear All Modify Search

Tomato (Lycopersicon esculentum Mill.) plants grown on polyethylene (PE) mulch in New York State frequently have more branches and increased mineral nutrient uptake and yield than plants not mulched. In four field experiments conducted on a silt loam soil, clear PE mulch stimulated root extension shortly after transplanting. One week after transplanting, roots were significantly longer for mulched than for unmulched plants in all four experiments, whereas aboveground dry matter differences did not become significant until 14 days after transplanting in two of four trials. Mulching increased branching, hastened flowering on basal branches, and increased concentration of major nutrients in the aboveground parts. In the field, stimulation of aboveground growth due to mulch might be brought about by warming of the stem by air escaping from the planting hole in the mulch. However, an experiment with black, white, or clear mulch, in which the planting hole was either left uncovered or covered with soil, showed no effect of hole closure on branching even though air temperature near the stem was increased when holes were left uncovered. The results taken together imply that the increased aboveground growth observed with mulching is a consequence of enhanced root growth and nutrient uptake.

Free access

Unmulched and polyethylene-mulched tomatoes (Lycopersicon esculentum Mill.) were grown with and without starter fertilizer (SF) in four field experiments. The fields varied as to residual P level and the amount of P incorporated before planting. No benefits from SF were obtained on a soil with high residual P that was moderately fertilized with P before transplanting or on a soil with low residual P that was heavily fertilized with P. A positive effect from SF was observed only when residual P was low and no P was broadcast, and this was true in mulched and umnulched plots. No significant SF by mulch interaction was obtained in these experiments even though mulching consistently increased shoot P concentrations and fruit yield. The mulch was beneficial even under conditions where unmulched tomato leaves contained 0.4 % P 3 weeks after transplanting, indicating that factors in addition to improved P nutrition are also involved in the mulch effect.

Free access