Search Results
Since psoralens have a very weak antifungal activity in vitro, we propose that (+)marmesin, the precursor of psoralens in celery (Apium graveolens L.) is associated with celery resistance to pathogens. (+)Marmesin has at least 100 times greater antifungal activity in vitro than psoralens. After 1 month of storage at 2C, the concentration of total psoralens increased from 8 to 67 μg·g-1 fresh weight, (+)marmesin decreased from 27 to 4 μg·g-1 fresh weight, and the incidence of decay increased from 0% to 34%. However, when celery was treated with GA3before 1 month of storage at 2C, decay increased to only 7%, the concentration of psoralens increased to 31 μg·g-1 fresh weight and the concentration of (+)marmesin decreased to 13 μg·g-1 fresh weight It seems that GA3 retarded celery decay during storage by slowing down the conversion of (+)marmesin to psoralens, thereby increasing the resistance to pathogens during storage.
Vesicular–arbuscular mycorrhizal inoculum consisting of a mixture of roots of coast redwood [Sequoia sempervirens (D. Don)], soil, and spores of Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe was tested for viability and efficacy following storage for 4 or 8 weeks at 4, 9, 15, or 24C and moisture contents of 0%, 6%, 12%, or 17%. Storage regimes did not have any effect on the number of spores of Glomus mosseae recovered after storage. However, germinability of the spores decreased from 35% before storage to 10% to 31% during storage, especially under typical ambient room conditions (17% moisture at 24C). Maximum colonization of coast redwood, sierra redwood [Sequoiadendrom giganteum (Lindl.) Buchh.], and incense cedar (Libocedrous decurrens Torr.) was achieved after inoculation with 1 inoculum: 1 potting mix dilution (w/w). However, plant fresh weight was highest following inoculation with a 1 inoculum: 5 potting mix dilution (w/w). Dried inoculum was effective when stored at 24C, or below 10C when moist.
The length of time required for vesicular-arbuscular mycorrhiza (VAM) colonization, the effect of root age, and the position of VAM inoculum with respect to the root system were tested on cotton (Gossypium hirsutum L.), onion (Allium cepa L.), and pepper (Capsicum annuum L.). Colonization of onion by Glomus deserticola began 3 days after inoculation and reached 50% of the total root length after 21 days. Colonization by G. mosseae and G. intraradices began after 12 days and attained 15% and 37%, respectively, after 21 days. In cotton, colonization with G. deserticola and G. intraradices began 12 days following inoculation and increased to 20% and 18%, respectively, after 21 days. Colonization of cotton by G. mosseae was poor. In pepper, colonization with G. deserticola, G. mosseae, and G. intraradices began 3, 6, and 6 days after inoculation and, after 21 days, reached 60%, 13%, and 10%, respectively. In a second experiment, rapid colonization by G. deserticola took place in 3-day-old onion seedlings and increased to 51% 3 days after inoculation. Ten- and 17-day-old seedlings were far less responsive to VAM colonization but became highly infected at 30 days when new roots were produced. In a third experiment, inoculum placement 3 cm below seeds at planting in the field was the most effective for promoting colonization of cotton and onion by VAM. In fumigated field soil, mycorrhizae increased cotton growth an average of 28% when inoculum was applied below seeds compared to one- or two-sided band applications. Even in nonfumigated field soil, inoculum placed 3 cm below the seed and inoculum placed in a band at one side 2 weeks after planting significantly increased cotton growth. In onion, mycorrhizal inoculation improved growth in fumigated soil when it was placed below the seed, but did not stimulate growth in nonfumigated soil.