Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Travis R. Alexander x
Clear All Modify Search

‘Brown Snout’ cider apple (Malus ×domestica) is desired by cider makers for its relatively high levels of phenolics, and over-the-row machine harvesting of ‘Brown Snout’ has been demonstrated to provide similar yield to hand harvest at a significantly lower cost. The purpose of this study was to determine if there is a measurable impact of harvest method on the phenolic profile of ‘Brown Snout’ juice and cider to better inform equipment adoption recommendations. Using a redox titration assay, the titratable tannin content (± SE) of juice (0.19% ± 0.01%) and cider (0.19% ± 0.01%) were found not to differ due to harvest method. Using a protein precipitation assay, juice from machine-harvested fruit was found to have lower levels of total tannins [231 ± 36 mg·L−1 catechin equivalents (CE)] than juice from hand-harvested fruit (420 ± 14 mg·L−1 CE). However, the total tannins of cider did not differ due to harvest method, the overall average for machine and hand harvest was 203 ± 22 mg·L−1 CE. The total phenolics of juice and cider did not differ due to harvest method (1415 ± 98 mg·L−1 CE and 1431 ± 73 mg·L−1 CE, respectively). Discriminant analysis based on an average of 33 tentatively identified phenolic compounds, as measured by ultra-high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry, showed no separation due to harvest method in juice or cider. In conclusion, over-the-row machine harvesting of ‘Brown Snout’ resulted in a final product of similar quality at reduced labor costs, and thus shows potential for increasing the commercial sustainability of cider apple operations.

Open Access

Irrigation water productivity is a priority for sustainable orchard management as water resources become more limiting. This study evaluated reduced irrigation (RI) as a management strategy for cider apple (Malus domestica Borkh.) production in 2019 and 2020 in northwestern Washington, which has a Mediterranean climate and averages 14.1 cm of precipitation from June to September. RI was evaluated on three cider apple cultivars, Dabinett, Porter’s Perfection, and Golden Russet, in their third and fourth leaf. Stem water potential (stem ψ) was measured weekly throughout the growing season to monitor water stress and implement the RI treatment: irrigation would be applied when stem ψ values dropped below −1.5 MPa, a threshold indicative of moderate water stress in apples. Soil water potential was monitored throughout the season, vegetative growth was assessed by measuring shoot length and non-destructive imaging of the plant canopy using lateral photography, and yield, fruit quality, and juice quality were measured at harvest. Moderate water stress as indicated by stem ψ did not occur either year, thus irrigation was never applied to the RI treatment plots. There was a negative relationship between average stem ψ and both yield and air temperature (P < 0.0001 for each); as yield increased by 5.9 kg per tree or temperature increased by 3.3 °C, stem ψ decreased by 0.1 MPa. The juice quality attributes of the three cultivars in this study were similar to their historic measures at this site and there were no differences due to irrigation treatment, likely because trees did not reach the threshold to induce physiological stress. Both years, trees in the RI treatment did not differ from the control treatment in vegetative growth, fruit yield, juice yield, or any juice quality attribute, but weight per fruit decreased by 7 g, and fruit firmness (measured only in 2020) increased by 2 N. Results from this study indicate that fruit yield and quality in an establishing orchard can be maintained when irrigation is reduced relative to crop water requirements that are estimated from a calculated water balance or relative to conventional grower practices for this region. This finding highlights the benefits of using plant water status to schedule irrigation.

Open Access

Anthracnose canker, caused by Neofabraea malicorticis, threatens the sustainability of cider apple (Malus ×domestica) production in the maritime climate of western Washington. In the short-term, the disease reduces overall orchard productivity and in the long-term it reduces an orchard’s economic life span. The disease is difficult to manage using cultural practices, and information on fungicide efficacy is limited and contradictory. To address this situation, a 2-year study was conducted to evaluate efficacy of zinc (4.49 lb/acre), basic copper sulfate (2.49 lb/acre), captan (2.94 lb/acre), thiophanate-methyl (0.69 lb/acre), pyraclostrobin plus boscalid (0.38 lb/acre), and combinations of these fungicides to manage anthracnose canker infection in young cider apple trees cultivated in a maritime climate. Trees used in the first year of the study (2016) were found to be infected by anthracnose canker on receipt, so the first year was a measure of disease control and the second year (2017) was a measure of disease prevention. In 2016, when fungicide treatments were applied every 3 weeks from March through October, none of the treatments evaluated inhibited the development of new infections or the expansion of existing cankers (77% increase in canker size on average for all treatments). In 2017, when fungicide treatments were applied every 3 weeks from February through April, two to three new cankers were observed 3 weeks after final treatment application for all treatments. Results from this study demonstrate that the current fungicides recommended for control of anthracnose canker are not reliably effective in the orchard environment of northwest Washington. Future studies should assess the fungicides evaluated in this study applied in rotation with additional systemic fungicides.

Open Access

This study was designed to determine the efficacy of canker excision (CE) followed by a subsequent application of cauterization (CAU) and/or fungicide treatment to the excised area for the management of anthracnose canker (caused by Neofabraea malicorticis) on cider apple (Malus ×domestica) trees. Three experiments were conducted from 2015 to 2017, with one experiment each year, in an experimental cider apple orchard in western Washington where trees were naturally infested with N. malicorticis. Treatments were applied once in December and data were collected January through March. Treatments in the 2015 experiment were CE + CAU, CE + CAU + copper hydroxide, CE + 0.5% sodium hypochlorite, Bordeaux mixture (BM) only, and CE + copper hydroxide (control). The 2016 experiment included the same treatments as in 2015 plus one additional treatment, CE + BM. In 2017, one additional treatment was added, CE only, and CAU treatments were removed as they caused significant injury to the trees. Canker size was measured pretreatment, and the treated canker or excised area was measured posttreatment every 2 weeks for 13–15 weeks. Compared with pretreatment, cankers treated with BM did not increase in size, while the excised area treated with CAU increased 28-fold in size on average, and the excised area treated with 0.5% sodium hypochlorite or copper hydroxide increased up to 4-fold in size. Each year new cankers developed in all treatments 13–15 weeks after treatment application, at a time of year when there should not be any spores present to cause new infections. Dark brown streaking, indicative of the disease, was observed in the tissue below the intact or excised cankers 15 months after treatment application all years. Although N. malicorticis was not isolated from symptomatic tissue, symptoms were observed in all treatments including where cankers had not been excised and there was no wounding of the cambium tissue. Findings from this study indicate that of the treatments evaluated, the application of copper hydroxide after CE was the most effective for limiting the number of new cankers, but it did not limit expansion of the excised area. Additional physical and fungicidal strategies need to be tested for effective management of anthracnose canker.

Free access

Mechanical hedging was evaluated at Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, in 2019 and 2020 on eight cider apple (Malus ×domestica) cultivars with four bearing habits: tip—Golden Russet, Harrison; spur—Brown Snout, Cap of Liberty; semispur—Tom Putt, Campfield; and crab—Puget Spice, Hewe’s Virginia Crab. Trees were planted on ‘Geneva 935’ (Malus hybrid) rootstock in one replicate block in 2014 and the second replicate block in 2016 and the central leader of all trees was headed in 2017 to equalize tree size and stage of development. Summer hedging was carried out on all cultivars on 16 July in 2019 and 7 July in 2020. The response of different cultivars was evaluated both years by measuring canopy area removed, shoot biomass removed, and fruit removed, and the amount of time to hedge was measured. Additionally, fruit diameter and fruit yield per tree were measured at harvest both years, and fruit weight was measured at harvest only in 2020. The hedger traveled at an average speed of 1.32 mph; it took 6 seconds on average to hedge both sides of one tree when in-row spacing was 6 ft and took 1.25 minutes to maneuver around the end of a row. The estimated time to hedge 1 acre was 1.45 hours when the hedger traveled at 116 ft/min and the orchard had 10 rows spaced 12 ft apart. Biomass removed on an area and weight basis was less in 2020 than in 2019, whereas yield per tree was 2.6 times greater in 2020 than 2019, and cultivars within a bearing habit differed in these responses to hedging both years. Fruit damaged by the hedger was assessed but observed to be negligible for all cultivars. Yield per tree was negatively correlated with fruit diameter (P < 0.001) and positively correlated with the number of fruit removed per tree (P < 0.025). Further research is needed to assess the long-term effects of hedging on biomass removal, yield, and biennialism to determine whether summer mechanical hedging is a cost-effective and suitable method for managing cider apple orchards.

Open Access

Hard cider, made by fermenting apple (Malus ×domestica) juice, was at one time the most widely consumed alcoholic beverage in America. Largely abandoned after Prohibition, within the past 2 decades the rise in popularity of craft beverages has led to the reemergence of hard cider as an alternative to beer, wine, and spirits. Today, hard cider represents one of the fastest growing sectors within the craft beverage industry. The recent interest in cider presents additional marketing opportunities for apple growers and businesses currently involved in, or considering entering, the apple cider or craft beverages industries. However, the lack of a strong history or experience in selecting, producing, and using cider apples poses a significant challenge to this emerging market. This article reviews the current state of research in cider apple production, including economic feasibility, mechanized management, and cultivar evaluation and improvement.

Open Access