Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Toshinobu Morikawa x
Clear All Modify Search

The aim of this study was to establish an alternative method to produce clones of tomato plants by modification of the complete decapitation method, which regenerates multiple shoots from the cut surfaces of the main and lateral stems of plants grown in vivo. Shading the stems of tomato plants drastically increased the number of regenerated shoots from 2.4 in controls with unshaded stems to 36.2 in shaded stems. In shaded stems, the concentrations of chlorophyll and phenolic compounds were stable for 3 weeks after cutting, whereas these amounts increased in unshaded stems. Inhibiting the production of phenolic compounds in the shaded stem tissues was associated with an acceleration of shoot formation in vivo.

Free access

There is concern that high temperatures resulting from global warming could reduce fruit set of tomato (Solanum lycopersicum). However, fruit set of parthenocarpic tomato genotypes, which often bears seedless fruit, is not reduced when grown under a high temperature. The cause of seedless fruit development was studied with the aim of increasing the seed number in parthenocarpic tomato. Ovule number at anthesis in parthenocarpic and non-parthenocarpic fruit did not differ, but the proportion of undeveloped ovules increased with time after anthesis in parthenocarpic tomato, whereas most ovules in non-parthenocarpic tomato developed normally. Pollen grains germinated on the stigma and extruded pollen tubes in parthenocarpic and non-parthenocarpic tomatoes, but in parthenocarpic tomato, pollen tube elongation was markedly inhibited in the style base. Elongation of pollen tubes on agar containing indoleacetic acid (IAA) was depressed in parthenocarpic and non-parthenocarpic tomato plants. p-Chlorophenoxyisobutyric acid (PCIB), which inhibits auxin action, did not affect the fruit set and fresh weight in either type of tomato, although seed number per fruit in parthenocarpic tomato was significantly increased from 13 ± 2 to 74 ± 6 seeds by PCIB treatment. These results indicated that a high IAA concentration in the ovary of parthenocarpic tomato inhibited pollen tube elongation, and that poor fertilization resulted in failure of ovule development. Moreover, floral organs in parthenocarpic tomato were normally developed as in non-parthenocarpic tomato, and seed development could be induced in parthenocarpic tomato by PCIB treatment.

Free access