Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Ting-Ting Li x
Clear All Modify Search

In this study, the effects of different Xinjiang pear varieties and ‘Korla Fragrant Pear’ pollination on the stone cells and lignin of fruit were investigated. The contents of stone cells and lignin, and the activities of related enzymes [polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonium lyase (PAL)] were analyzed in fruit from different pollination combinations at different growth and developmental stages. Results showed that the stone cell mass density decreased rapidly at 60 to 90 days and 90 to 120 days after flowering. The stone cell and lignin contents, and activities of the three enzymes (PPO, POD, and PAL) decreased rapidly at 60 days after flowering. The stone cell mass density, stone cell and lignin contents, and enzyme activity of fruit from different pollination combinations varied at different timescales. The pear variety ‘Bayue‘ had the lowest stone cell and lignin contents in mature fruit from different pollination combinations. The stone cell content correlated positively with lignin content, stone cell mass density, and enzyme activity.

Open Access

The flowering control of Oncidesa Gower Ramsey ‘Honey Angel’ is important and in-demand by the industry. Therefore, an understanding of the development of inflorescence and vegetative shoot from the leaf axils on the current shoot is required. The internode of a young Oncidesa current shoot between the 0th (at the base of the pseudobulb) and 1st (immediately above the pseudobulb) nodes can enlarge to form a pseudobulb, and the axillary bud on the 0th or -1st (immediately below the 0th node) node can differentiate into an inflorescence bud. The axillary buds on the lower nodes (-2nd to -4th nodes) can remain vegetative. In this study, we investigated the growth and anatomical features of axillary buds at various stages during the growth of the current shoot. We sampled the axillary buds on the 0th to -4th nodes from the current shoots when they were 10, 15, 20, 25, and 30 cm in length for sectioning and anatomical observations. Vegetative buds on the -2nd to -4th nodes grew faster and had more nodes than the inflorescence bud when the current shoot grew from 10 to 25 cm. However, when the current shoot elongated from 25 to 30 cm, the length and node number in the inflorescence bud on the 0th node increased and the inflorescence branch primordia were observable. The length and node number of the inflorescence bud became the same as that of the vegetative buds, which had no further growth, whereas the current shoot grew from 25 to 30 cm. The pseudobulb began to emerge from the leaf sheath (unsheathing) when the current shoot had reached 30 cm in length. Therefore, the time when the pseudobulb started to unsheathe from its subtending leaf was critical for the reproductive growth of Oncidesa Gower Ramsey ‘Honey Angel’ when growth acceleration of the inflorescence bud occurred. Evaluating the current shoot length can be a nondestructive method of estimating the developmental stage of the inflorescence bud.

Open Access

Cytological features of ‘Aijiaohuang’ chinese cabbage-pak-choi (Brassica campestris ssp. chinensis) Bcajh97-01A/B genic male-sterile AB line were examined to determine phenotypic reasons for male sterility. The sterile line Bcajh97-01A was found to undergo aberrant cytokinesis during male meiosis. Transcriptional profiling of the flower buds of both fertile and sterile plants was performed at the periods preceding meiosis, at the tetrad to uninucleate pollen period, and at the binucleate to mature pollen period. Transcript-derived fragments (TDFs) from corresponding genes that were expressed in flower buds at these three different stages could be divided into nine classes. We sequenced a total of 14 new TDFs that were differentially displayed at particular pollen developmental stages, including eight genes with unknown or hypothetical functions and six genes showing significant homology with known genes. This characterization of the Bcajh97-01A genic male-sterile line allowed the identification of candidate genes underlying genic male sterility.

Free access

Anthocyanins are protective pigments that accumulate in plant organs such as fruits and leaves, and are nutritionally valuable components of the human diet. The MYB10 transcription factor (TF) plays an important role in regulating anthocyanin biosynthesis in Malus crabapple leaves. However, little is known about how the promoter regulates McMYB10 expression and influences the substantial variation in leaf anthocyanin accumulation and coloration that is observed in different crabapple cultivars. In this study, we analyzed leaf coloration, anthocyanin levels, and the expression levels of McMYB10 in the leaves of 15 crabapple cultivars with three leaf colors at various development stages, and showed that the expression of McMYB10 correlates positively with anthocyanin accumulation. We also examined the relationship between the number of R6 and R1 elements in the McMYB10 promoters of the different cultivars and the pigmentation of the new buds of spring-red cultivars, as well as the methylation level of the McMYB10 promoters at different development stages in three representative crabapple cultivars. The ratio of R6/R1 minisatellites in the promoters correlated with the color and anthocyanin accumulation in new crabapple buds, and we concluded that the differences in promoter structure and methylation level of the McMYB10 promoters coordinately affect the leaf color of crabapple cultivars.

Free access

Kiwifruit (Actinidia deliciosa) is a typical climacteric fruit, and its ripening is closely associated with ethylene. In this study, we present evidence that H2S alleviated ethylene-induced ripening and senescence of kiwifruit. Kiwifruit were fumigated with ethylene released from 0.4 g·L−1 ethephon solution or H2S with 1 mm sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate kiwifruit ripening and H2S treatment effectively alleviated ethylene-induced fruit softening in parallel with attenuated activity of polygalacturonase (PG) and amylase. Ethylene + H2S treatment also maintained higher levels of ascorbic acid, titratable acid, starch, soluble protein, and reducing sugar compared with ethylene group, whereas suppressed the increase in chlorophyll and carotenoid. Kiwifruit ripening and senescence under ethylene treatment was accompanied by elevation in reactive oxygen species (ROS) levels, including H2O2 and superoxide anion and malondialdehyde (MDA), but combined treatment of ethylene plus H2S alleviated oxidative stress in fruit. Furthermore, the activities of antioxidative enzymes catalase (CAT) and ascorbate peroxidase (APX) were increased by ethylene + H2S treatment in comparison with ethylene alone, whereas the activities of lipoxygenase (LOX) and polyphenol oxidase (PPO) were attenuated by H2S treatment. Further investigations showed that H2S repressed the expression of ethylene synthesis-related genes AdSAM, AdACS1, AdACS2, AdACO2, and AdACO3 and cysteine protease genes, such as AdCP1 and AdCP3. Taken together, our findings suggest that H2S alleviates kiwifruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene synthesis pathway.

Free access

Anthocyanins are protective pigments that accumulate in plant organs such as fruits and leaves, and are nutritionally valuable components of the human diet. There is thus considerable interest in the factors that regulate synthesis. Malus crabapple leaves are rich sources of these compounds, and in this study we analyzed leaf coloration, anthocyanin levels, and the expression levels of anthocyanin biosynthetic and regulatory genes in three crabapple cultivars (Royalty, Prairifire, and Flame) following various temperature treatments. We found that low temperatures (LTs) promoted anthocyanin accumulation in ‘Royalty’ and ‘Prairifire’, leading to red leaves, but not in ‘Flame’, which accumulated abundant colorless flavonols and retained green colored leaves. Quantitative reverse transcript PCR (RT-PCR) analyses indicated that the expression of several anthocyanin biosynthetic genes was induced by LTs, as were members of the R2R3-MYB, basic helix–loop–helix (bHLH) and WD40 transcription factor families that are thought to act in a complex. We propose that anthocyanin biosynthesis is differentially regulated in the three cultivars by LTs via the expression of members of this anthocyanin regulatory complex.

Free access

To examine whether 1 mm of spermidine (Spd) modifies plant ethylene production in response to short-term salt stress, cucumber (Cucumis sativus) seedlings were grown in nutrient solution with or without 75 mm NaCl stress for 3 days, and the leaves were sprayed with 1 mm Spd or water (control). We investigate the effects of the treatments on ethylene production, 1-aminocyclopropane-1-carboxylate (ACC) content, 1-(malonylamino) cycolpvopane-1-carboxylic acid (MACC) content, activities of 1-aminocyclopropane-1-carboxylate synthase (ACS), and 1-aminocyclopropane-1-carboxylate oxidase (ACO) and gene expression of acs2, aco1, and aco2 in the cucumber leaves. The results indicate that ethylene production was increased significantly under salt stress as did ACC and MACC content, the activities of ACS and ACO, and the transcriptional level of acs2, whereas the gene expression of aco1 and aco2 was somewhat decreased. However, exogenous Spd treatment depressed the content of ACC and MACC, ACS activity, and the level of acs2 transcripts in the leaves of salt-stressed cucumber. Although the activity of ACO and gene expressions of aco1 and aco2 increased by Spd, ethylene emission was inhibited. Our results suggest that application of exogenous Spd could reverse salinity-induced ethylene production by inhibiting the transcription and activity of ACS under salt stress. We conclude that exogenous Spd could modify the biosynthesis of ethylene to enhance the tolerance of cucumber seedlings to salt stress.

Free access

The interaction between potassium (K) and magnesium (Mg) in plants has been intensively studied. However, the responses of different tomato (Solanum lycopersicum L.) cultivars to high K levels at low temperatures remained unclear. Herein, a complete randomized hydroponic experiment was conducted to evaluate the effects of temperature (25 °C day/18 °C night vs. 15 °C day/8 °C night) and K concentrations (156 mg·L−1 vs. 468 mg·L−1) on the growth and Mg nutrition of tomato cultivars Gailiangmaofen (MF) and Jinpeng No. 1 (JP). Compared with the control temperature (25 °C day/18 °C night), the low temperature decreased total biomass, shoot biomass, and Mg uptake in shoot by 17.3%, 24.1%, and 11.8%, respectively; however, the root/shoot ratio was increased. High K had no significant effect on plant growth or biomass compared with the control K concentration (156 mg·L−1); however, Mg concentrations and uptake in shoot were significantly lower under high-K treatment. Significant difference was observed for K uptake, but not for Mg uptake, between the two cultivars. There was no significant interaction between temperature and high K on Mg uptake of tomato, so a combined stress of low temperature and high K further inhibited Mg uptake and transport. Low temperature and high K increased the risk of Mg deficiency in tomato.

Free access

Agrobacterium-mediated genetic transformation is commonly used in dicotyledon plants such as apples. The regeneration ability of the recipient is an important factor in transformation efficiency. Here, the variations in bud regeneration rate (BRR) and the number of adventitious buds (NAB) formed per explant in Malus germplasm accessions with phenological stage were estimated. Both BRR and NAB of explants at the dormancy broken and spring sprouting stages were significantly higher than those at the autumn sprouting stage. The genetic diversity and inheritance of BRR and NAB were evaluated using 153 Malus germplasm accessions and 78 hybrid trees of Jonathan × Golden Delicious. Malus sieversii 31, Liberty, and Smoothee exhibited significantly high BRR (98.33%, 98.33%, and 93.33%, respectively) and a large NAB without vitrification. BRR and NAB linearly correlated with each other but not with callus formation rate. The broad sense heritability of the regeneration rate was 92.16%. The three Malus accessions that had high regeneration ability, and some of their sexual descendants, might be outstanding genetic resources for future genetic transformation.

Free access