Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Timothy L. Creger x
Clear All Modify Search

Concerns about food safety prompted a case study of the arsenic and Pb contents of tree fruits grown on lead arsenate-contaminated soil. The arsenic concentration in apricot (Prunus armeniaca L.) and `Gala' apple (Malus domestica Borkh.) fruit was positively related to concentrated HCl-extractable soil arsenic. Fruit arsenic in both species did not exceed 70 μg·kg-1 fresh weight (fw). Fruit Pb was below the limits of detection of 20 μg·kg-1 fw for apricot and 24 μg·kg-1 fw for apple. All of these concentrations are substantially below levels associated with human health risk. `Riland' apricot trees did not show arsenic phytotoxicity at soil, fruit, and leaf arsenic concentrations associated with phytotoxicity symptoms in `Goldrich' apricots. The apple trees showed no visual symptoms of arsenic phytotoxicity.

Free access

Fruit trees grown in soils contaminated with lead arsenate (PbHAsO4) pesticide residues are subject to arsenic (As) phytotoxicity, a condition that may be exacerbated by use of phosphate fertilizers. A potted soil experiment was conducted to examine the influence of phosphate fertilizer on accumulation of As and lead (Pb) in apricot (Prunus armeniaca) seedlings grown in a lead arsenate-contaminated Burch loam coil. Treatments were fertilizer source (mono-ammonium phosphate [MAP], ammonium hydrogen sulfate [AHS]) and rate (0, 8.7, 17.4, and 26.1 -mmol/liter), and presence/absence of lead, arsenate contamination (231 -mg/kg coil). Plant biomass accumulation was reduced by lead arsenate presence and by high fertilizer rates, the latter due to soil salinization. Phytoaccumulation of As was enhanced by lead arsenate presence and by increasing MAP rate but was not influenced by AHS rate, salinity, or acidity of soil. Phytoaccumulation of Pb was enhanced by lead arsenate presence but was not influenced by fertilizer treatment.

Free access