Search Results
Prunus dulcis (Mill.) D.A. Webb. is grown as an economically valuable crop in a number of countries worldwide, but large-scale cultivation has been primarily restricted to semiarid and arid regions with mild, temperate climates. Considering the species’ wide native range and inherent genetic, morphologic, and phenologic diversity, almond remains quite underused in areas outside those currently in cultivation. The area comprising the former USSR represents an extremely large and diverse region and is a center of genetic diversity for P. dulcis and related species. Much of this region, which is the center of origin and/or diversity of many important crops, has been inaccessible to the Western world for centuries, and much of the scientific literature produced there has not been widely disseminated in the English language. Since the breakup of the USSR, this region has become increasingly open and opportunities for reciprocal germplasm collection, exchange, and scientific collaborations are growing. To bring increased attention to the valuable P. dulcis genetic resources endemic to this region, and to promote better use, management, and preservation of these important resources, the wild distribution of almond and closely related species, and extensive germplasm holdings of institutions across the former USSR, are herein described. Recent and ongoing collection and breeding activities in the U.S. Intermountain West are also discussed.
Central Asia is a center of diversity for many important fruit and nut tree species, including wild and cultivated apricots (Prunus armeniaca L.). A wealth of apricot germplasm that expresses novel and valuable characteristics such as fruits with high soluble solids, edible kernels, glabrous skin, and diverse colors and flavors, as well as later-blooming flowers, late-maturing fruit, and drought, cold, and salt tolerance, can be found growing across this region. Since the dissolution of the Soviet Union, Central Asia has become more accessible for reciprocal germplasm exchange and scientific collaborations. Thus, opportunities now exist to obtain, study, and use a much wider diversity of Central Asian apricot germplasm in breeding efforts, which can lead to improved crop traits and ultimately an expansion of the regions where this high-value crop can be grown. To bring attention to the valuable P. armeniaca genetic resources found in Central Asia and to promote its better use, management, and preservation, a description and history of the species from a Central Asian perspective, along with recent and ongoing activities, are discussed in this article.