Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Tian Gong x
Clear All Modify Search

Abscisic acid (ABA) is an important plant hormone that plays an important role in stress responses. Previous studies have suggested that ABA can also accelerate ripening in climacteric and nonclimacteric fruit. Capsanthin is a carotenoid that confers red coloration to mature pepper (Capsicum annuum) fruit. However, the effect of ABA on capsanthin accumulation in pepper fruit has not been thoroughly studied. Herein, we aimed to evaluate the effects of ABA treatment on capsanthin accumulation in pepper fruit and on the expression of key genes involved in the capsanthin biosynthetic pathway. For this purpose, we treated pepper fruit with ABA at green mature stage. Our results indicate that ABA treatment increased capsanthin content in pepper fruit, with the best result obtained with 150 mg·L−1 ABA solution. Application of exogenous ABA also increased the expression levels of the capsanthin synthesis genes phytoene synthase (Psy), lycopene β-cyclase (Lcyb), β-carotene hydroxylase (Crtz), and capsanthin/capsorubin synthase (Ccs), likely explaining the significant capsanthin content increase in pepper fruit.

Free access

Recently, so-called “vegetative” and “generative” rootstocks have been identified by seed companies as rootstock types that have different impacts on tomato scions. In this experiment of grafted grape tomato production in an organically managed high tunnel system, we characterized the effects of vegetative and generative rootstock cultivars on tomato yield components and fruit mineral contents. Grape tomato scions ‘BHN 1022’ (determinate) and ‘Sweet Hearts’ (indeterminate) were grafted onto ‘DR0141TX’ (vegetative), ‘Estamino’ (generative), and ‘Multifort’ (noncharacterized) rootstocks with self- and nongrafted scions as controls. Experiments were conducted twice with different transplanting dates (Expt. 1: 31 Jan. vs. Expt. 2: 9 Mar.) in 2018. No rootstock by scion interaction effects on whole-season fruit yield components were observed, indicating similar responses of determinate and indeterminate grape tomato scions to all rootstocks tested. For Expt. 1, the three rootstocks increased marketable fruit number, marketable yield, and total yield by 23.3%, 37.9%, and 34.4% on average, respectively, compared with the self- and nongrafted controls, primarily due to improved productivity during the peak and late harvest periods. For Expt. 2, the rootstocks did not significantly benefit any whole-season yield components. ‘DR0141TX’ and ‘Multifort’ increased stem diameter in both experiments, whereas ‘Estamino’ only increased stem diameter in Expt. 2 relative to the nongrafted controls. Consistent increase in aboveground dry biomass of rootstock treatments at crop termination in Expt. 1 corresponded to the greater yield of rootstock-grafted plants in that experiment. All rootstocks in both experiments consistently increased fruit P, K, Ca, Zn, and Fe contents on a dry weight basis at peak harvest regardless of the tomato scion used. Despite a relatively low level of root-knot nematode infestation, plants grafted with ‘DR0141TX’ or ‘Estamino’ tended to have lower root galling index ratings than scion controls and ‘Multifort’-grafted plants, which was more evident in Expt. 1. Given the different environmental conditions during the tomato production period between the two experiments conducted in high tunnels, our findings highlight the important influence of production environment on grafted tomato performance. This study on grafted grape tomatoes in high tunnel organic production systems also demonstrated that so-called “vegetative” and “generative” rootstocks had similar impacts on tomato scion yield components and fruit mineral contents.

Open Access

Interest is growing among small-scale growers in grafting tomato (Solanum lycopersicum) for improved crop productivity. Healing of newly grafted plants is often considered to be a critical process requiring a highly controlled environment. Setting up healing chambers and managing healing conditions can be major challenges for small-scale producers that limit graft survival and discourage further attempts at using grafting technology. Here, we demonstrate a simple “chamberless healing” strategy for grafted tomato plants using regular indoor conditions without the need to install and manage a sophisticated healing chamber. We hypothesize that tomato can form a high-quality graft in a healing environment with relative humidity below 70% and ambient temperatures between 22 and 25 °C. ‘Tribute’ beefsteak tomato as the scion was grafted onto ‘Estamino’ rootstock in the 2018 experiment, whereas ‘Multifort’ and ‘Shield RZ F1 (61-802)’ were used as the rootstocks in the 2019 experiment. After grafting, the seedlings for the chamberless healing treatment were kept in uncovered seedling trays and misted with water two or three times per day. Seedlings in other treatments were placed in a humidity dome or wrapped chamber to maintain high humidity during the first few days after grafting. In the 2018 experiment, chamberless healing was compared with covered treatments with different ventilation times during the first few days after grafting. In the 2019 experiment, chamberless healing was compared with a standard graft healing chamber treatment to further validate its feasibility. In both 2018 and 2019, all treatments showed high graft survival rates (>85%) at 21 days after grafting (DAG), and plants from the chamberless healing treatment had a lower incidence of adventitious root growth than plants from other healing treatments (0% to 7% vs. 33% to 78%). In the 2019 experiment, no differences in graft union strength, photosynthetic rate, biomass accumulation, or flowering time were observed between the chamberless and standard healing treatments. Plants with chamberless healing were slightly (8%) shorter than the standard treatment at 21 DAG, but no difference was observed at 27 DAG. Although some additional management is required during healing to prevent water loss, the alternative chamberless system assessed in this study exhibited great potential to facilitate small-scale graft healing for producing grafted tomato transplants under standard indoor conditions without any sophisticated healing environment and management.

Open Access