Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Thomas Horgan x
Clear All Modify Search

Mississippi growers produce southernpea for the fresh market on raised beds using 20 to 30 lb/acre nitrogen. This study compared conventional production practices to alternative approaches in a 3 × 2 × 2 factorial arrangement in a randomized complete-block design with four replications. Three cultivars of southernpea, `Quickpick' (QP), `Texas Pinkeye' (T × PE), and `Mississippi Pinkeye' (MsPE), were planted into either raised or flat beds using either 30 lb/acre ammonium nitrate without seed inoculation or no ammonium nitrate with Rhizobium seed inoculation. QP and T × PE were harvested with a one-row Pixall harvester and MsPE was hand harvested. All plots were harvested at the mature-green stage. Yields were reduced due to drought conditions during pod fill. MsPE was hand harvested only once due to dry conditions and less-than-ideal yields. QP produced significantly greater yield (1208 lb/acre) than T × PE (962 lb/acre) or MsPE (981 lb/acre). The two nitrogen treatments were not significantly different. QP and T × PE were not affected by bed architecture, but MsPE on raised beds yielded significantly more than on flat beds. As with a similar study in 1998, also under nonirrigated conditions, MsPE had a significantly greater shellout than QP or T × PE. There were no significant interactions for yield or percent shellout.

Free access

Ten “mini” or personal size seedless watermelons were evaluated at three locations: north and central Mississippi and in central Alabama. `Betsy', `Bobbie', `Demi-Sweet', `Extazy', `Mini Yellow', `Petite Treat', `Solitaire', `Valdoria', `Vanessa', and `Wonder' were the cultivars trialed. Seedlings were started, in a greenhouse, four weeks before planting. All locations used drip irrigation and black plastic mulch and were fertilized according to soil testing lab recommendations. A personal size diploid (seeded) variety, `Jenny', was used as the pollinator. One pollinator was planted, and interspaced evenly, for every three triploid plants. Four harvests were made at each location on 7-day intervals. Yields reported are based on 2,074 triploid plants per acre and 1,037 pollinizer plants per acre. Only the triploid yield reported. Plant spacing was 14 ft2 per plant. For total yield (lb/acre) the cultivars `Petite Treat' (27,210), `Valdoria' (25,700), and `Demi-Sweet' (26,400) were among the top producers at each location. `Mini Yellow' was a top producer at all locations averaging 22,480 lb/acre. For total yield (fruit/acre) the cultivars `Valdoria' (3,380), `Petite Treat' (3,470), `Bobbie' (3,470), `Betsy' (3,380), and `Vanessa' (2,740), were among the top producers at each location. For total yield (lb/fruit) `Betsy' (6.9), `Wonder' (6.7), and `Vanessa' (6.1) had the overall lowest individual fruit weights. `Demi-Sweet' had the highest individual fruit weight in central Alabama (10.0) and north Mississippi (8.8). One problem observed was that a number of melons among cultivars were above or below size class. Also determining melon ripeness was a challenge. Melon quality was good. The soluble solids concentration (sweetness) of all melons was excellent. `Demi-Sweet' had the highest incidence of hollowheart. `Wonder' and `Extazy' had no incidences of hollowheart at any location. Rind thickness had no significant differences, however in both locations measured `Mini Yellow' had the thinnest rind. Rind necrosis was not encountered.

Free access

Steam distillation of essential oil crops produces residual distillation wastewater that is released into the environment. This study evaluated the effects of three plant hormones [methyl jasmonate (MJ); gibberellic acid (GA3); and salicylic acid (SA)] at three concentrations and the residual distillation water from 15 plant species applied as foliar spray on biomass yields, essential oil content, and essential oil yield of Mentha ×piperita ‘Black Mitcham’ and Mentha spicata ‘Native’. Overall, the application of SA at 1000 mg·L−1 increased biomass yields of both species. More treatments influenced essential oil content in ‘Black Mitcham’ peppermint than in ‘Native’ spearmint. Application of MJ at 100 and 1000 mg·L−1, GA3 at 10 mg·L−1, SA at 10 or 100 mg·L−1, and distillation water of Achillea millefolium, Ammi majus, Artemisia absinthium, Cymbopogon flexuosus, Cymbopogon martinii, Chrysanthemum balsamita, and Hypericum perforatum increased the essential oil content of peppermint, whereas the oil content of spearmint was increased only by application of Monarda fistulosa distillation water. Application of MJ at 100 mg·L−1, SA at 100 mg·L−1, and A. absinthium, C. flexuosus, and C. balsamita distillation waters increased essential oil yields of peppermint, whereas the application of SA at 1000 mg·L−1 and distillation water of A. absinthium, Lavandula vera, and M. fistulosa increased oil yields of spearmint. This study demonstrated that the residual distillation water of some aromatic plant species may be used as a tool for increasing essential oil content or essential oil yields of peppermint and spearmint crops.

Free access

Sweet sagewort, also known as sweet wormwood (Artemisia annua L.), contains essential oil and other natural products. The objective of this study was to evaluate the effect of eight different distillation times (DTs; 1.25 minutes, 2.5 minutes, 5 minutes, 10 minutes, 20 minutes, 40 minutes, 80 minutes, and 160 minutes) on A. annua essential oil and its antioxidant capacity. Highest essential oil yield was achieved at 160-minute DT. The concentration of camphor (8.7% to 50% in the oil) was highest at the shorter DT and reached a minimum at 160-minute DT. The concentration of borneol showed a similar trend as the concentration of camphor. The concentrations of some constituents in the oil were highest at 2.5-minute DT (alpha-pinene and camphene), at 10 minutes (paracymene), at 20 minutes (beta-chamigrene and gamma-himachalene), at 80 minutes [transmuurola-4(15),5-diene and spathulenol], at 80- to 160-minute DT (caryophylene oxide and cis-cadin-4-en-ol), or at 160-minute DT (beta-caryophyllene, transbeta-farnesene, and germacrene-D). The yield of individual constituents reached maximum at 20- to 160-minute DT (camphor) at 80- to 160-minute DT [paracymene, borneol, transmuurola-4(15),5-diene, and spathulenol], or at 160-minute DT (for the rest of the oil constituents). DT can be used to attain A. annua essential oil with differential and possibly targeted specific chemical profile. The highest antioxidant capacity of the oil was obtained at 20-minute DT and the lowest from the oil in the 5-minute DT. This study suggests that literature reports on essential oil content and composition of A. annua could be compared only if the essential oil was extracted at similar DTs. Therefore, DT must be reported when reporting data on essential oil content and composition of A. annua.

Free access

Peppermint (Mentha ×piperita) is currently not a common crop in the southeastern United States. Recently, there has been an interest in peppermint as an essential oil crop for this region. In 2007, a field experiment was conducted in Mississippi to determine the effect of nitrogen (N) (0 and 80 kg·ha−1), location (Verona and Stoneville), and harvesting stage (bud formation and flowering) on peppermint productivity, oil content, and composition. Peppermint biomass yields were higher at Verona (8.12 t·ha−1) than at Stoneville (6.12 t·ha−1). However, the essential oil content was higher at Stoneville (1.1%) than at Verona (0.6%). Generally, N rate at 80 kg·ha−1 did not affect oil yield and composition compared with 0 kg·ha−1. The concentrations of the major essential oil constituents were: (-)-menthol at 26% to 30%, (-)-menthone at 14% to 21%, (+)-menthofuran at 5% to 11%, and eucalyptol at 3% to 4% of total essential oil (wt/wt) and were generally within the values previously reported. The concentrations of (-)-menthone and (+)-menthofuran were significantly higher at Stoneville, 21% and 11%, respectively, than at Verona (14% and 6%). The (-)-menthol, (-)-menthone, and (+)-menthofuran yields/ha were higher at Stoneville than at Verona. Overall oil content and yields were higher at bud formation than at flowering, 1.3 and 1.8 times, respectively. In addition, the concentration of (-)-menthone and eucalyptol and the yields of (-)-menthone, (+)-menthofuran, and eucalyptol were higher at bud formation than at flowering. The results from this study demonstrated peppermint can be successfully grown in Mississippi and provide essential oil yields and composition comparable to those in the northwestern United States, the traditional peppermint-growing region.

Free access

Three years of trials in Mississippi have led to the naming of a Mississippi Medallion vegetable award winner for 2007, the fourth vegetable winner in the program's history. The Medallion program looks for garden crops that will perform throughout the state of Mississippi and help improve sales of plant materials to gardeners at retail. The Medallion selection process illustrates how growers and marketers, not just gardeners, can select specialty vegetables and cultivars for production and sale. Between 2003 and 2005, the Mississippi Medallion trials evaluated 11 sweet peppers with no green fruit stage for ornamental and yield value. Each site had three or four replications of all cultivars under evaluation annually with four plants per plot set out on raised beds with drip irrigation. Objective evaluation included total yield, marketable yield, fruit size, and days to harvest. Subjective evaluation included crop uniformity, pest tolerance, and appearance of the fruit based on color, uniformity, and shape. After nine trials, four cultivars were among the highest-yielding group in most trials: Mavras, Tequilla, Blushing Beauty, and Gypsy. The Medallion winner, to be announced in Fall 2006, was selected in part because it was within or near the top-yielding group, by least significant difference, in most trials. The perceived attractiveness of the mature fruit to the evaluating team and the perceived potential marketability of the cultivar moved it above the others under consideration. The reasons for not selecting other cultivars as the winner are as important as the reasons for selecting the winning cultivar. In the Medallion pepper case, these were mostly marketability concerns with the other cultivars, not yield issues, relative to that of the winner.

Free access

Lettuce is one of the major crops of the United States and can provide a large portion of income for small to medium size growers. Growing lettuce in adverse environmental conditions can have negative effects on quality. Elevated levels of potassium (K) have been shown to positively influence quality in various fruits and vegetables, such as tomato, pepper, and strawberry. However, research is lacking on the effects of elevated levels of K on leafy vegetables such as lettuce. Therefore, seeds of ‘Cimmaron’ lettuce were sown into a soilless medium and grown in greenhouse conditions at 25/20 °C (day/night). At 27 days after seeding, the plantlets were transferred to 3.8-L plastic nursery pots. Plants were grown under increasing K treatments of 98 (control), 185 (2×), 370 (3×), and 740 (8×) kg·ha−1. Plants were harvested 56 days after seeding. Application of elevated levels of K fertilizer treatments in red romaine lettuce had a positive quadratic effect on plant height increasing 7.0% from the control. Fresh weight (FW) increased 13.0% from the control and dry weight (DW) increased 15.5%. There was linear increase of 30.0% in sucrose concentrations in lettuce leaf tissue. In addition, the increase in K treatments caused an increase of 43.3% in K concentrations in the leaf tissue. In other nutrients, such as Calcium (Ca), Magnesium (Mg), and Sulfur (S), there was a decrease in the leaf tissue of 61%, 52%, and 46% when compared with the control treatment, respectively. The results of the current study suggest that increasing K fertilizer to 185 kg·ha−1 has the best results for plant height, FW and DW, and mineral nutrient concentrations. This study may initiate research that could examine the effects of increasing K fertilizer levels in lettuce or other leafy green vegetables on antioxidant levels and postharvest storability.

Free access

Garden sage (Salvia officinalis L.) is a medicinal, culinary, ornamental, and essential oil plant with a wide range of ecological adaptation. Garden sage essential oil traditionally is extracted by steam distillation from the above-ground biomass and has widespread applications as an aromatic agent in the food and pharmaceutical industries as well as in perfumery and cosmetics. The hypothesis of this study was that the steam distillation time (DT) may significantly affect essential oil yield and composition of garden sage and, therefore, DT could be used as a tool to obtain oil with different composition. Therefore, the objective was to evaluate the effect of various steam DTs (1.25, 2.5, 5, 10, 20, 40, 80, and 160 minutes) on garden sage oil yield and composition. Most of the oil in the garden sage dry herbage was extracted in 10-minute DT; extending DT up to 160 minutes did not significantly increase oil yields. Overall, 39 oil constituents were identified in the garden sage essential oil. Fourteen oil constituents with the highest concentration in the oil were selected for statistical analyses. Monoterpenes represented the major percentage (58.2% to 84.1%) of oil composition followed by sesquiterpenes (4.0% to 16.1%) and diterpenes (0.3% to 7.6%). Overall, the monoterpene hydrocarbons (α-pinene, camphene, β-pinene, myrcene, and limonene) were eluted early in the steam distillation process, which resulted in their high concentration in the oil at 5- to 10-minute DT and relatively low concentrations in the oil obtained at 160-minute DT. In general, the concentration of sesquiterpenes (β-caryophyllene, α-humulene, and verdifloral) increased with increasing duration of the DT and reached their respective maximum concentrations in the oil at 160-minute DT. The relative concentrations of major constituents, camphor and cis-thujone, in the oil obtained at 2.5-minute DT were higher than in the oils obtained at longer DT. Therefore, if oil with high concentrations of camphor and cis-thujone is desirable, garden sage dried biomass ought to be steam distilled for 2.5 to 5 minutes and the oil collected. If oil with a high concentration of monoterpene hydrocarbons and a high concentration of oxygenated monoterpenes is desirable, then garden sage should be distilled for 20 minutes. If oil with a high concentration of the diterpene manool is desirable, then garden sage should be steam-distilled for 80 minutes. If oil with a high concentration of sesquiterpenes is desirable, then garden sage should be steam-distilled for 160 minutes. The duration of steam distillation can be used as an economical method to obtain garden sage oil with a different chemical composition. The regression models developed in this study can be used to predict garden sage oil yield and composition distilled for various amounts of time and to compare literature reports in which different durations of DT were used.

Free access

The aquaculture industry generates significant nutrient-rich wastewater that is released into streams and rivers causing environmental concern. The objective of this controlled environment study was to evaluate the effect of waste shrimp water (SW), vermicompost (VC), at rates of 10%, 20%, 40%, and 80% by volume alone or in combination with SW, controlled-release fertilizer (CRF), and water-soluble fertilizer (WSF) on bell peppers (Capsicum annuum L.) cv. X3R Red Knight. Application of VC at 80% or SW alone increased yields relative to unfertilized control. Combined applications of VC and SW increased yields compared with VC alone. Overall, total yields were greatest in the chemical fertilizer treatments (CRF and WSF) and least in the unfertilized control. SW and VC increased growth medium pH relative to the unfertilized control or to the chemical fertilizer treatments. In pepper fruits, the greatest nitrogen (N) content was found in the CRF treatment, although it was not different from VC at high rates or WSF treatments. Phosphorus concentration in peppers was greatest in the CRF treatment, less in all VC or SW treatments, but not different from unfertilized control or WSF treatment. Iron, magnesium (Mg), and zinc concentrations in peppers were greatest in CRF treatment but not different from control or WSF treatments. Overall, N accumulation in peppers was negatively correlated to growth medium pH and calcium (Ca); phosphorus (P) in peppers was negatively correlated to growth medium pH, Ca, and sodium (Na), whereas potassium (K) in peppers was negatively correlated to growth medium P, Mg, and Na. Results indicated: 1) SW may not be a viable pepper nutrient source; (2) SW can provide a similar nutrient supply as VC; and (3) chemical fertilizers can provide higher pepper yields compared with SW or VC alone or in combination.

Free access

Pumpkins (Cucurbita pepo, C. moshata) were grown in northern Mississippi during 2000 and 2001 for the purpose of more narrowly defining plant population recommendations for commercial production in the humid southeastern United States. Four plant populations were examined for `Aspen': 908, 1361, 2045, and 3068 plants/acre (2244, 3363, 5053, and 7581 plants/ha, respectively) and for `Howden Biggie': 605, 908, 1361, and 2045 plants/acre (1495, 2244, 3363, 5053 plants/ha, respectively). Plant populations were adjusted by varying in-row spacing while holding between-row spacing constant at 8 ft (2.4 m). Plant population significantly affected yield of `Aspen' and `Howden Biggie'. Linear and quadratic terms were significant for `Aspen', with maximum yield (ton/acre and fruit/acre) for the quadratic relationship occurring at about 2045 plants/acre. In contrast, yield of `Howden Biggie' decreased significantly (ton/acre) and nonsignificantly (fruit/acre) in a linear relationship as plant population increased from 605 to 2045 plants/acre. Plant population significantly affected fruit weight and size. As plant population increased, weight and size decreased slightly but significantly in a linear relationship for `Aspen' (lb/fruit and inch3/fruit) and `Howden Biggie' (lb/fruit). The quadratic relationship for `Howden Biggie' (inch3/fruit) was significant and the minimum value occurred at about 1361 plants/acre. Plant population significantly affected pumpkin yield components associated with plant productivity. As plant population increased, number and weight of fruit per plant decreased sharply in a quadratic relationship for `Aspen' (lb/ plant and fruit/plant) and `Howden Biggie' (lb/plant). The linear relationship for `Howden Biggie' (fruit/ plant) also decreased significantly. At the highest plant populations for `Howden Biggie', 40% of the plants did not produce marketable pumpkins. In conclusion, recommendations of optimum plant populations for a semi-vining cultivar such as `Aspen' should be centered on about 2045 plants/acre. Published recommendations from Kentucky appear sound, advocating plant populations within the range of 1360 to 2720 plants/acre (3361 to 6721 plants/ha). For a vining cultivar such as `Howden Biggie', recommendations can be as low as 605 plants/acre. Published recommendations from Kentucky and Georgia, along with those published in the Vegetable Crop Guidelines for the Southeastern U.S., advocate plant populations for vining cultivars of approximately 725 to 1465 plants/acre (1790–3620 plants/ha). Our results with `Howden Biggie', a cultivar that produces larger pumpkins than most other vining cultivars grown for the wholesale market, indicate that producers of vining cultivars should use plant populations from the lowest values of these recommendations or use even lower values. Our results also indicate that growers can control size and weight of pumpkins by varying plant population, with increasing populations resulting in a slight decrease of size and weight.

Full access