Search Results

You are looking at 1 - 10 of 35 items for

  • Author or Editor: Thomas H. Yeager x
Clear All Modify Search

Three-month-old rooted cuttings of Ligustrum japonicum Thunb. were planted in a 2 pine bark: 1 Canadian peat: 1 sand substrate (by volume) in either 0.75- or 2.2-liter containers and grown for 17 weeks in a greenhouse. One-half of the plants grown in 0.75-liter containers were transplanted to 2.2-liter containers after 11 weeks and grown for 6 weeks in 2.2-liter containers. Shoot dry weights were highest for plants grown 17 weeks in 2.2-liter containers and smallest for plants grown 17 weeks in 0.75-liter containers. Root dry weights were similar for plants grown 17 weeks in 0.75-liter containers. The percentage of applied N used by shoots and roots (44% and 8%, respectively) was highest for plants grown 17 weeks in 2.2-liter containers and smallest (30% and 5%, respectively) for plants grown 17 weeks in 0.75-liter containers.

Free access

Multiple branched liners of `Mrs. G. G. Gerbing' azaleas (Rhododendron L.) were greenhouse-grown for 16 weeks in 3-liter containers with a common nursery medium. The growth medium of each plant was amended with either 0.5, 1.5, or 2.5 g N from Osmocote 14N-6P-11.6K and irrigated with either 920 ml water twice a week or evapo-transpiration (ET) plus 10%, 30%, or 50%. Shoot dry weights (35 and 35 g, respectively) for plants irrigated with ET plus 30% or 50% and fertilized with 1.5 g of N were larger than plants fertilized with 0.5 or 2.5 g N and irrigated with ET plus 10%, 30%, or 50%. Shoot dry weights of plants irrigated with ET plus 30% or 50% were similar to plants irrigated with 920 ml twice a week when plants received 1.5 g N. Plants that received 920 ml twice a week and 2.5 g N had larger shoot dry weights than plants irrigated with ET plus 10%, 30%, or 50% and fertilized with 2.5 g N. Shoot dry weights increased from 17 to 46 g for the 0.5 and 2.5 g N treatments, respectively, when plants were irrigated with 920 ml.

Free access

Nursery operators had the opportunity to participate in a process to develop a voluntary incentive-based regulation that consummated the consensus of nursery and regulatory personnel regarding the best fertilization and irrigation cultural practice information available for producing plants in containers. Florida Department of Agriculture and Consumer Services (FDACS), which has statutory authority to develop and adopt practices by administrative rule, administered the process, and they relied on university extension personnel to provide education so nursery operators would be prepared to implement practices consistent with the regulation. Nursery operators who voluntarily implemented these practices received a waiver of liability from the recovery costs associated with the cleanup of groundwater contaminated with nitrate nitrogen if each of the following activities had taken place: 1) a notice of intent was filed with FDACS to implement accepted practices; 2) practices based on consensus of the industry were used and guidelines followed; and 3) fertilization and irrigation records were maintained. Participation in an industry-driven regulatory program where nursery operators agreed to use the best cultural practices available prior to the identification of a specific groundwater issue was a significant proactive step for the industry.

Full access

The nursery industry in Broward County, Fla., had to choose between partaking in the resolution needed to achieve 10 ppb total phosphorus discharged to the Everglades or face regulation. The industry decided to pursue the proactive route and implement best management practices (BMPs). Teams of industry personnel were formed to develop the content of the Florida Container Nursery BMP Guide that contained the following chapters: 1) nursery layout, 2) container substrate and planting practices, 3) fertilization management, 4) container substrate nutrient monitoring, 5) irrigation water quality, 6) irrigation application, 7) irrigation uniformity, 8) erosion control and runoff water management, 9) pesticide management, and 10) waste management. Each team was to determine the content of their chapter, based on cultural practices producers were currently using, or could be using, which would minimize or reduce surface water movement of phosphorus from the nursery to adjacent water. Cultural practices, brought forth after a consensus was achieved by each team in concert with governmental agencies, associations, and allied industries, were meshed with research information, or the “best” information available from academic sources to ensure that the resolutions or BMPs that were written would contribute to resolving the confl ict (i.e., elevated total phosphorus in canal waters). Consensus development is a new challenge for most academicians but it is important because unbiased and science-based knowledge is needed to assist in BMP development. Furthermore, consensus of those directly and indirectly involved in the nursery industry helps facilitate the use of BMPs. Once the Florida Container Nursery BMP Guide is adopted by rule under the statutory authority of the Florida Department of Agriculture and Consumer Services, nursery operators voluntarily using the BMPs and keeping appropriate records will receive a waiver of liability from cleanup costs associated with contaminated ground or surface water, and be presumed to be in compliance with state water quality standards.

Full access

Multiple branched liners of llex vomitoria were greenhouse-grown in 3-liter containers with a common nursery medium and received either 2.5 g N surface-applied in 1 application as Osmocote (18N-2.6P-10K) or a total of 0, 0.5, 1,5 or 2.5 g N per container from a solution that contained N, P and K in a ratio of 6:1:3. The solution fertilizer was applied either 1, 2, 3 or 4 times per week with total N applied per container equally divided among individual applications, After 26 weeks, shoot dry weights were greatest for plants that received 2.5 g of N as either 2 soluble applications per week or as Osmocote applied once at the beginning of the experiment. Plants that received 1.5 g of N applied 4 times per week had similar shoot dry weights. Nitrogen uptake will be calculated to determine if 4 applications par week resulted in greater utilization than 2 applications par week or 1 application of Osmocote during the growing season.

Free access

Ilex vomitoria Ait. `Nana' root and-shoot growth increased as rate of fertilizer applied from a 6N-1P-3K solution increased from 0.5 to 2.5 g N/3-liter container during a 26-week experiment. Percentage of applied N, P, and Kin the plant and growth medium decreased as N applied increased. Dividing the fertilizer among one, two, or four applications per week resulted in similar use of applied N, P, and K. Shoot dry weights for the 0.5 g N/container treatment were less than for the Osmocote (18N-2.6P-10K) treatment (2.5 g N/container), but the percentage of applied N, P, and K in the plant and growth medium (55%, 42%, and 75%, respectively) was greater than for the Osmocote treatment (31%, 15%, and 27%, respectively).

Full access

Abstract

A 2 pine bark : 1 moss peat: 1 sand (by volume) medium (11% volumetric, 20% gravimetric moisture) amended with 4.2 kg m −3 of dolomitic limestone and 3 kg m−3 of 32P-, 35S-superphosphate (8.7% P, 11.7% S) was incubated (25°C) for either 0, 15, or 30 days. Columns (4 × 15 cm) of the medium for each incubation time received 48 ml of deionized water (pH 5.5) in 3 hr on day 1 and 16 ml in 1 hr on days 2-21. Forty-six and 21% of 32P and 35S, respectively, leached on day 1 when the medium was not incubated. Thirty-one percent and 28% of the 32P and 14% and 13% of the 35S leached on day 1 if the medium had been incubated 15 or 30 days, respectively. Eighty-two percent of the 32P and 66% of the 35S amendment leached from the unincubated medium during the 3 week experimental period. A similar leaching experiment, but with superphosphate in absorbent cotton instead of the soilless medium, indicates superphosphate dissolves readily.

Open Access

The capacity for container-grown plants to capture sprinkler irrigation water plays a critical role in adjusting irrigation rates to deliver required amounts of water to the container substrate. The capture factor (CF) used to describe this capacity was defined as the amount of water captured with a plant relative to the amount captured without a plant. A wind-sheltered, irrigation test area was established to measure CF as affected by plant species, plant size, container size, container spacing, and sprinkler type. CF values for 11 marketable-sized, commonly grown plant species ranged from 1 to 4 with highest values exhibited by plant species with an upright, spreading growth habit. CF values increased as plant size increased. Close container spacings (less than one container diameter between adjacent containers) reduced CF when the allotted area outside the container limited the potential amount of water that could be captured. Compared with impact sprinklers, wobbler sprinklers increased irrigation capture 7% for Ligustrum japonicum grown in 27-cm-diameter containers but not in 16-cm-diameter containers. Results showed that CF is a dynamic parameter that depends on canopy size, container size, container spacing, and sprinkler type. A working knowledge of CF is crucial for determining irrigation requirements to maximize sprinkler irrigation efficiency in container nurseries.

Free access

Nursery operations have strategically positioned themselves close to markets and many are now an agricultural entity surrounded by urban encroachment. The environmental pressures of society have mounted at unprecedented rates, resulting in additional regulations for nurseries. Development and implementation of Best Management Practices (BMPs) for the nursery industry allows nurseries to be proactive and not wait for regulations that might harm the industry. Univ. extension personnel with BMP subject matter expertise can play a pivotal role in assisting the industry with development and implementation of proactive BMPs. Important steps that have served as a model for BMP development and implementation include the following. Establish need—the industry leadership must explain to nursery personnel the reasons why BMPs are needed and elicit assistance with BMP development from university personnel. Committee guidance—the industry leadership establishes a steering committee of nursery personnel representing various interests of the industry to work with university and regulatory personnel to conceptualize BMPs and develop objectives. Consensus development—steering committee communicates their objectives to the nursery industry, explains the impacts, and provides a mechanism for feedback to achieve broad-based stakeholder participation. BMPs drafted - steering committee writes a draft BMP manual that is available for industry review. Industry-wide input—steering committee aggressively seeks input from the industry, implements as many suggestions as possible, and informs industry of BMP manual revisions. Educational programs—university extension personnel conduct training for nursery operators implementing BMPs and track the impact of BMPs on nurseries.

Free access