Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Thomas C. Koch* x
  • All content x
Clear All Modify Search
Free access

Thomas C. Koch* and Irwin L. Goldman

Carotenoids (provitamin A) and tocopherols (vitamin E) are powerful antioxidants in plants and in the human diet. Carrot (Daucus carota) has been selected for increased levels of carotenoids, contributing to its orange color and reported health benefits. Selection for increased tocopherol has shown success in seed oils, but little progress has been made in the edible portions of most vegetable crops. HPLC measurement following a simultaneous heptane extraction of both compounds has shown a significant (P ≤ 0.001) positive correlation of α-tocopherol with α-carotene (r = 0.65) and β-carotene (r = 0.52). To increase both the tocopherols and carotenoids in plants, 3 populations have been established from select open-pollinated varieties grown in 2002. These populations consist of half-sib families with these differing selection schemes: based strictly on increased α-tocopherol levels; an index to increase α-carotene, β-carotene and α-tocopherol; and a random population in which no selection is occurring. After one cycle of selection, populations were grown on muck soil during the summer of 2003. Compared with the random population, an increase of 24.68% in α-tocopherol concentration was recorded for the population selected strictly on α-tocopherol while increases of 8.47% in α-tocopherol, 9.31% in α-carotene and 7.31% in β-carotene were recorded for the population with index selection. The continuation of these carrot populations shows promise to produce carrot germplasm with improved human nutritive value.

Free access

Thomas C. Koch and Irwin L. Goldman

Carotenoids and tocopherols are health-functional phytochemicals that occur in a wide range of fruit and vegetable crops. These two classes of compounds are synthesized from a common precursor, geranyl-geranyl pyrophosphate, and are typically analyzed separately via high-performance liquid chromatography (HPLC) techniques. Because carotenoids and tocopherols are present in many edible horticultural crops, it would be advantageous to measure them simultaneously in plant tissues. Herein we report a one-pass reverse-phase HPLC method for extraction and analysis of carotenoids and tocopherols in carrot that can be extended to other high-moisture plant organs. Elution times ranged from 5 minutes for α-tocopherol to 24 minutes for β-carotene. This method improves the efficiency of analyzing these compounds by up to 50%, and should increase the efficiency of assessing carotenoid and tocopherol profiles in horticultural crops.

Free access

Jennifer L. Baeten, Thomas C. Koch, and Irwin L. Goldman

Carrot has been bred for increased levels of pro-vitamin E α-tocopherol. This vitamin is lipid soluble. Carrot root has been shown to have measurable levels of lipid, but it is not certain if the lipid level is correlated to α-tocopherol levels. The HPLC method is needed to quantify levels of α-tocopherol. Measuring lipids may be less time consuming in a breeding program. We developed a method for extracting lipids from carrot tissue based on the Soxhlet extraction method. The Soxhlet extraction uses a non-polar ether solvent to pull lipids out of freeze-dried tissue. A collection of carrot accessions ranging in α-tocopherol concentration 0.04–0.18 ppm and carotenoid concentration 10.63–1673.76 ppm were used in this investigation. Root tissue was freeze-dried and lipid levels were measured in an experiment with two replications. The mean lipid level of root tissue was 0.05 g fat/g tissue. The range was 0–1.1 g fat/g tissue. Phenotypic correlations were performed among lipid, α-tocopherol, and β-carotene concentrations in these samples. Twenty-four samples were tested for lipid levels (12 high and 12 low). From these results, percent lipid of the root was determined. Correlations were made between the lipid data and α-tocopherol data of the given samples.