Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Theodore W. Tibbitts x
Clear All Modify Search

Abstract

A procedure for inducing intumescence injury (oedema) on leaf disks was developed using a species of wild tomato, Lycopersicon hirsutum PI LA 1625. This procedure used Plexiglas vessels with which various combinations of irradiance direction and leaf disk orientation could be studied. Disks (1.4 cm in diameter) were cut from leaves and floated on distilled water in these vessels. Irradiation was provided by cool-white fluorescent lamps and was filtered through ultraviolet- (UV) absorbing Plexiglas. Disks were scored for injury after a period of 72 hr. Intumescences that developed on leaf disks using this procedure appeared similar in size, shape, and coloration to those on intact plants. Disks taken from leaves that were almost fully expanded developed injury most consistently, and the adaxial disk surface was much more sensitive to this injury than the abaxial surface. Intumescences were generally greater on the disk surface in contact with water. Besides L. hirsutum, injury was induced successfully on disks cut from eucalyptus (Eucalyptus globulus), sweet potato (Ipomoea batatas), tomato (Lycopersicon esculentum), ivy geranium (Pelargonium peltatum), European aspen (Populus tremula), and white potato (Solanum tuberosum).

Open Access

A system maintaining continuous water tension on a nutrient solution has been developed to control root zone moisture levels for plants in microgravity conditions. This study was conducted in a growth chamber to characterize potato (Solanum tuberosum L.) responses to constant water tension compared to plants grown with no tension using a free-water technique. In three separate experiments, plants were grown in trays filled with a 4-cm layer of 1-mm-diameter isolite (porous ceramic) particles. Ten porous stainless-steel tubes, 4 cm apart, were buried in the medium, and nutrient solution was drawn through the porous tubes under a constant water tension of -0.5 kPa maintained with a siphon system. For the free-water treatment, trays were slanted, and solution was supplied along the upper end of trays, passed under the medium, and then collected at the lower end and recirculated. The same nutrient solution was recirculated through both treatments at a flow rate of 150 ml·min-1 through each tray and maintained at a pH of 5.6. Uniform micropropagated `Norland' potato plantlets were transplanted into replicate trays and maintained at 18C, 70% relative humidity, and a continuous photosynthetic photon flux (PPF) of 450 μmol·m-2·s-1. Water tension reduced total plant dry weight, leaf area, leaf number, and stolon number by >75%, but specific leaf weight increased compared to free water. However, tubers enlarged more rapidly with water tension, and plants consistently partitioned a greater fraction of biomass into tubers (than into shoots). Tuber weight was greater with water tension than in the free-water culture in Expt. 1 harvested 37 days after transplanting, however it was less in Expt. 2 when plants were grown to a larger size for 52 days before harvest. Leaf CO2 assimilation rate, stomatal conductance, and transpiration were reduced with water tension, although the relative water content of leaves was not significantly affected. Also, with water tension, concentrations of N, P, Zn, and Cu in leaf tissues decreased, whereas tissue Fe increased compared to plants grown with free water. The results in this study demonstrate that constant water tension significantly affects potato plant growth and shifts biomass partitioning toward tubers.

Free access

The role of tehylene in the development of constant-light injury of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum Mill.) was investigated. In one study, silver thiosulfate (STS) was applied to the foliage of four potato cultivars growing under constant light. Leaf area and shoot dry mass of `Kennebec' and `Superior', cultivars normally injured by constant light, were greater (P<0.05) than those of control plantsgiven foliar applications of distilled water. Examination of STS-treated `Kennebec' leaflets revealed significantly less injury (necrotic spotting and reduced starch content) than the water-treated controls. `Norland' and `Denali', cultivars tolerant of constant light, exhibited no differences in growth between treatments. In a second study, injury (necrotic spotting and reduced starch content) was induced in leaflets of `Denali' when exposed to spray applications of 0.5 mmol·L-1 ethephon or air containing 0.5 to 0.8 μL·L-1 ethylene. In a third study, three genotypes of `Ailsa Craig' tomato were grown under constant light. Leaves of the normal `Ailsa Craig' exhibited epinasty, reduced chlorophyll concentration, and reduced starch content. Leaves of a mutant `Ailsa Craig', containing the Never ripe mutation, did not exhibit epinasty but exhibited the same amount of reduced chlorophyll concentration and starch content as normal plants. Leaves of a transgenic `Ailsa Craig', containing an antisense gene of 1-aminocyclopropane 1-carboxylate (ACC) oxidase, were epinastic, but chlorophyll concentration and starch content were greater than in leaves of normal and mutant plants. These results suggest that transgenic plants were more tolerant of constant light than the other genotypes. Evidence from these studies indicates that ethylene, combined with constant light, has an important role in the development of constant-light injury.

Free access

This study determined the responses of potato (Solanum tuberosum L., cv. Norland) plants to various patterns of air temperature changes over different growth periods (phasic temperature changes). In each of two experiments under controlled environments, eight treatments of temperature changes were carried out in two growth rooms maintained at 17 and 22C and a constant vapor pressure deficit of 0.60 kPa and 14-hour photoperiod. Plants were grown for 63 days after transplanting of tissue culture plantlets in 20-liter pots containing peat-vermiculite mix. Temperature changes were imposed on days 21 and 42, which were essentially at the beginning of tuber initiation and tuber enlargement, respectively, for this cultivar. Plants were moved between two temperature rooms to obtain eight temperature change patterns: 17-17-17, 17-17-22, 17-22-17, 22-17-17, 17-22-22, 22-17-22, 22-22-17, and 22-22-22C over three 21-day growth periods. At harvest on day 63, total plant dry weight was higher for the treatments beginning with 22C than for those beginning with 17C, with highest biomass obtained at 22-22-17 and 22-17-17C. Shoot dry weight increased with temperature increases from 17-17-17 to 22-22-22C during the three growth periods. Tuber dry weight was highest with 22-17-17C, and lowest with 17-17-22 and 17-22-22C. With 22-17-17C, both dry weights of stolons and roots were lowest. Total tuber number and number of small tubers (<2.5 cm) were highest with 17-17-17 and 17-17-22C, and lowest with 17-22-22 and 22-22-22C, whereas number of medium tubers (2.5-5.0 cm) was highest with 22-17-22C, and number of large tubers (>5.0 cm) was highest with 22-17-17C. This study indicates that tuber development of potatoes is optimized with a phasic pattern of high temperature during early growth and low temperature during later growth.

Free access

The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were `determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 μmol·s-1·m-2 of photosynthetic photon flux, `Denali' and `Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. `Kennebec' and `Superior' were severely stunted, producing only 10% of the plant dry matter produced by `Denali' and `Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in `Kennebec' and `Superior' were lower, and intercellular CO2 partial pressures were higher than in `Denali' and `Haig'. These results indicate that inhibition of net CO2 assimilation in `Kennebec' and `Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of `Kennebec' and `Superior' plants were only 10% of those in `Denali' and `Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted `Kennebec' and `Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

Free access

An electron microprobe was used to determine tissue concentrations of Ca across 20-mm-long leaves of `Green Lakes' crisphead lettuce (Luctuca sativa L.) with and without tipburn injury. Concentrations within the fifth and 14th leaves, counted from the cotyledons, from plants grown under controlled-environment conditions were compared to concentrations within similar leaves obtained from plants grown under field conditions. Only the 14th leaf from plants grown under controlled-environment conditions developed tipburn. Injured areas on these leaves had Ca concentrations as low as 0.2 to 0.3 mg·g-1 dry weight. Uninjured areas of tipburned leaves contained from 0.4 to 0.5 mg·g-1 dry weight. Concentrations across the uninjured 14th leaf from field-grown plants averaged 1.0 mg·g-1 dry weight. Amounts across the uninjured fifth leaves from both environments averaged 1.6 mg·g-1 dry weight. In contrast, Mg concentrations were higher in injured leaves than in uninjured leaves and thus were negatively correlated with Ca concentrations. Magnesium concentrations averaged 4.7 mg·g-1 dry weight in injured leaves compared with 3.4 mg·g-1 dry weight in uninjured leaves from both environments. Magnesium concentrations were uniform across the leaf. Potassium concentrations were highest at the leaf apex and decreased toward the base and also decreased from the midrib to the margin. Potassium averaged 51 mg·g-1 dry weight in injured and uninjured leaves from both environments. No significant differences in K concentration were present between injured and uninjured leaves. This study documented that deficient concentrations of Ca were present in areas of leaf tissue developing tipburn symptoms and that concentrations were significantly higher in similar areas of other leaves that had no symptoms. This study also documented that Ca concentrations were significantly lower in enclosed leaves that exhibited tipburn symptoms than in exposed leaves that did not exhibit tipburn. Also, the amounts of Ca in plants that developed tipburn in controlled environments were lower than in plants of the same cultivar that did not develop tipburn in field plantings. The reduced levels of Ca in plants grown in controlled environments were associated with faster development rates compared with field-grown plants.

Free access

Abstract

The young developing leaves of 20-day-old lettuce plants (Lactuca sativa L. ‘Buttercrunch’) were enclosed by aluminized polyethylene sheaths to decrease transpiration and reduce Ca transport. The plants were grown in recirculating solution culture systems using a modified half-strength Hoagland’s solution under cool-white fluorescent lamps with a photosynthetic photon flux of 350 μmol·s−1·m−2 in a 16:8-hr (light:dark) period. Air temperature and humidity were 20°C and 65%, respectively. After 4 days of enclosure, 53% of the inner leaves (leaves one to 3 cm in length) were tipburned. After the same period, less than 1% of the inner leaves on control plants were tipburned. The concentration of Ca in enclosed inner leaves was 0.63 mg·g−1 dry weight, compared to 1.48 mg·g−1 dry weight in inner leaves that were not enclosed. The Ca concentration in transpiring outer leaves of all plants was 9.9 mg·g−1 dry weight. The Mg concentration in enclosed inner leaves was 2.25 mg·g−1 dry weight, compared to 2.34 mg·g−1 dry weight in inner leaves that were not enclosed. This research documents that enclosure of leaves at the growing point, as would occur with normal head development, is sufficient to create a limiting concentration of Ca in the enclosed tissue and encourage tipburn development.

Open Access

The magnitude of dark opening of stomata on leaves of Irish potato (Solanum tuberosum L.) was studied to determine if this opening was related to the high sensitivity of these plants to air pollutants. Stomatal opening was studied over diurnal periods both in the field and in controlled environments. In both environments, stomatal conductance decreased rapidly at the initiation of dark to 0.1 cm·s-1 but then increased to 0.2 cm·s-1 over the dark period. However conductance was always less in the dark than in the light (0.3 to 0.9 cm·s-1). During the early part of the dark period, stomatal conductance in controlled environments was not as great as in the field, but conductance was similar in both environments over the latter part of the dark period. Cultivars Norchip and Kennebec had smaller conductances during the first hours of the dark than Haig or Katahdin, and all cultivars increased in conductance over the dark period. `Haig' showed slightly higher conductance than the other three during the last 4 hours of the dark period. Injury to `Haig' from 3-hour fumigations with sulfur dioxide (SO2) or ozone (O3) demonstrated that exposures during the day generally produced more injury than during the night, although exposures with SO2 during the last 3 hours of the light period produced similar injury to exposures at the end of the dark period. Thus, although partial opening during the dark may be permitting some pollution injury, it is concluded that previous published reports of similar opening of stomata on Irish potatoes during the light and dark periods, and equal or greater pollution injury during the dark compared with the light period, were not substantiated and apparently resulted from procedural artifacts.

Free access

Tissue concentrations of Ca, Mg, and K were determined across immature leaves of lettuce (Lactuca sativa L. `Buttercrunch') at different stages of enlargement using electron microprobe x-ray analysis. The analysis was with a wavelength dispersive spectrometer to permit detection of low concentrations of Ca. Patterns of mineral accumulation in immature leaves that were exposed were compared to patterns of accumulation in leaves that were enclosed within a developing head. The leaves developing without enclosure were free to transpire and developed normally whereas leaves developing with enclosure were restricted in transpiration and developed an injury that was characteristic of Ca deficiency. In the exposed leaves, Ca concentrations increased from an average of 1.0 to 2.1 mg·g-1 dry weight (DW) as the leaves enlarged from 5 to 30 mm in length. In the enclosed leaves, Ca concentrations decreased from 1.0 to 0.7 mg·g-1 DW as the leaves enlarged from 5 to 30 mm in length. At the tips of these enclosed leaves a larger decrease was found, from 0.9 to 0.3 mg·g-1 DW during enlargement. Necrotic injury first became apparent in this tip area when the concentration was ≈0.4 mg·g-1 DW. Magnesium concentrations across the exposed leaves were similar to concentrations across the enclosed leaves, and did not change with enlargement. Magnesium concentrations averaged 3.5. mg·g-1 DW in both enclosed and exposed leaves during enlargement from 5 to 30 mm. In both exposed and enclosed leaves, K concentrations increased during enlargement from 40 to ≈60 mg·g-1 DW. Potassium concentrations were highest toward the leaf apex and upper margin where injury symptoms occurred, and this may have enhanced injury development. This research documents the critical low levels of Ca (0.2 to 0.4 mg·g-1 DW) that can occur in enclosed leaves of plants and which apparently leads to the marginal apex necrosis of developing leaves seen frequently on lettuce and other crops.

Free access

Abstract

A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

Open Access