Search Results
You are looking at 1 - 10 of 16 items for
- Author or Editor: Theodore M. DeJong x
The growth and development patterns of fruit have been studied for many years and it has become traditional to think of peaches as having a double sigmoid pattern with three main stages fruit growth. This concept is primarily based on analyses of fruit absolute growth rates An alternative approach is to express growth on a relative growth rate (RGR) basis which is simply the weight increase perg of fruit weight per day. This analysis applied to dry-weight peach fruit growth results in a two-phase curve that is known mathematically as a Gompertz function. During the first growth phase the RGR decreases logarithmically and during the second phase the RGR remains relatively stable. Expressing fruit growth on a RGR basis is advantageous for fruit growth carbon budget modelling because RGR is directly related to respiration rates and for physiological studies because most analyses for physiologically active substances are expressed on a weight basis. There is obviously not only one “right” way to express fruit growth but it may be instructive to use the RGR approach particularly when studying factors that may be associated with “sink” activity.
An approach to developing a simulation model of the annual carbon supply and demand for reproductive and vegetative growth in peach trees will be presented. This modeling approach simulates photosynhetic carbon assimilation using seasonal canopy light interception and daily minimum and maximum temperature and solar radiation inputs. Simulation of carbon partitioning and crop growth is based on the hypothesis that plants grow as collections of semi-autonomous, but interacting organs. The plant genotype, triggered by internal and environmental signals, determines current organ specific growth potentials. Daily environmental conditions interact with organ specific growth potentials to determine the conditional growth capacity and maintenance respiration requirement (i.e. the carbon demand) of each organ type. Then the daily carbon available for growth after maintenance requirements are met is partitioned to leaves, fruits, stems, and branches based on their relative conditional growth capacities. Remaining carbohydrate is partitioned to the trunk based on its conditional growth capacity and all residual carbohydrate is partitioned to roots after above-ground demands are met. The methods used to determine organ specific growth potentials and the usefulness of using the supply and demand approach to modeling the carbon economy of deciduous fruit crops will be discussed.
The primary period of shoot extension growth on field-grown peach trees occurs in the evening. Field measurements indicate a 2-3 fold increase in growth rate occurs in the late afternoon and lasts for about 2 hours. The daily growth pattern is correlated with trends in temperature, water potential and carbohydrate concentrations. Early morning and late night growth rates are apparently limited by low temperatures. Heating shoot tips at these times causes extension rate to increase greatly above that of controls at ambient temperature. The afternoon surge in extension growth rate is correlated with recovering stem water potentials. Artificially increasing stem water potential at mid-day by reducing transpiration causes extension rates to dramatically increase 2-3 fold. Starch is accumulated in the shoot extension zone during the day and depleted during the evening surge in growth.
In a simple, yet elegant experiment conducted 30 years ago, Chan and Cain (1967) using 'Spencer Seedless', a facultatively parthenocarpic apple (Malus×domestica Borkh.) cultivar, proposed that seeds inhibited flowering and accentuated biennial bearing in apple. Their conclusions have been extrapolated widely to include apple and other species. We have tested the universality of their conclusions using 'Bartlett' pear (Pyrus communis L.), a commercially important, facultatively parthenocarpic cultivar. Unlike 'Spencer Seedless' apples and seedless 'Bartlett' pear grown in France, California-grown seedless 'Bartlett' pear fruit strongly inhibited flowering the following year. However, the presence of seeds increased 'Bartlett' pear fruit size relative to seedless fruit by 13% and 20% in nonthinned and heavily-thinned pear trees, respectively, indicating that seeds increased fruit sink strength.
The effects of low and high crop loads in 2002 on floral development (Summer 2002), pistil size at anthesis (Spring 2003), and subsequent season fruit size at maturity (Summer 2003) were studied. Trees were all thinned to the same crop load in 2003. Three peach cultivars (Elegant Lady, O'Henry and Fairtime) with different ripening times (mid-July, mid-August, and early-September, respectively) were used to assess the effects of current season crop on floral development for the subsequent season. Based on previous literature, we reasoned that the maximum competition for carbohydrates between maturing fruit and developing buds is likely to occur at fruit maturity, especially under heavy crop loads. In 2003, individual fruit were harvested and weighed at maturity. In all three cultivars, a heavy crop load reduced the percentage of floral buds initiated and delayed floral differentiation. A heavy crop load also reduced pistil size at anthesis and fruit size at maturity in the subsequent season. These data support the practice of vigorous pruning to annually renew fruiting wood in peach to minimize the influence of crop in the previous season on the subsequent season's fruit and maintain large fruit sizes.
Almond spurs are known to be the primary bearing unit in almond tree and are subject to alternate bearing. Fruits are a strong sink in bearing spurs and can influence spur leaf growth. At the same time the percent of flowers that set fruit on a spur (spur relative fruit set) could be influenced by the competition among multiple flowers/fruits borne on the same spur as well as by limited leaf area on the same spur. The aim of the present work was to investigate the relationship between current-year spur leaf area and spur absolute and relative fruit set. Approximately 2400 spurs were tagged and followed over 6 years and data concerning spur leaf area, number of flowers per spur, and number of fruits per spur were collected. Spur leaf area was reduced in fruiting spurs in comparison with non-fruiting spurs according to the number of fruits borne by each spur. This phenomenon contributes to spur alternate bearing because spur flowering and survival in the next year are a function of the leaf area in the current year. Relative fruit set in almond appears to be negatively associated with current-year spur leaf area. Competition among fruits on the same spur did not appear to influence spur relative fruit set.
L-PEACH is a computer-based model that simulates the growth of peach [Prunus persica (L.) Batsch] trees. The model integrates important concepts related to carbon assimilation, distribution, and use in peach trees. It also includes modeling of the responses to horticultural practices such as tree pruning and fruit thinning. While running L-PEACH, three-dimensional (3D) depictions of simulated growing trees can be displayed on the computer screen and the user can easily interact with the model. Quantitative data generated during a simulation can be saved to a file or printed for visualization and analysis. L-PEACH is a powerful tool for understanding how peach trees function in the field environment, and it can be used as an innovative method for dissemination of knowledge related with carbohydrate assimilation and partitioning. In this study, we describe the version of L-PEACH that runs on a daily time-step (L-PEACH-d) and how users can run the model and interact with it. To demonstrate how L-PEACH-d works, different pruning and fruit thinning strategies were analyzed. Regarding pruning, model outputs showed 3D depictions of unpruned trees and pruned trees trained to a perpendicular V system. For the fruit thinning studies, we simulated different intensities and dates of fruit thinning in mature peach trees. Total simulated yield increased with crop load but the opposite was observed for average fruit weight. An optimal balance between simulated total yield and average fruit weight was obtained by leaving 150 fruit per tree. Simulating different dates of fruit thinning indicated that fruit weight at harvest was higher on earlier compared with later-thinned trees. The model indicates that fruit thinning should be therefore carried out early in the season to maximize fruit size. The simulation results demonstrate that L-PEACH-d can be used as an educational tool and facilitate the adoption of suitable cultural practices for efficient production.
Controlled pollinations were made using 20 elite selections from the University of California, Davis, Prunus domestica (european plum) breeding program as parents. These parents were used to generate 11 self-pollinated progenies with an inbreeding coefficient (F) of 0.5, 10 full-sibling progenies (F = 0.25), and 11 progenies from among nonrelated parents (F = 0). Seven additional progenies were chosen as a random-mating control set within the parental group; progenies in the control set had accumulated a range of current inbreeding coefficients (average F = 0.23) over two to five generations with intervening cycles of selection. Survival percentages were 85, 82, and 74 for the full-sib progeny, control set progeny, and selfed progeny, respectively, relative to nonrelated progeny. Two months after germination the percent decrease in the growth trait means for the selfed progeny compared to the nonrelated progeny ranged from 14% to 30% whereas growth trait means for full-sib progeny decreased from 1% to 9% compared to nonrelated progeny. The percent decrease for growth trait means of the selfed progeny after completing one season of growth in the field (10 months) was similar to that observed after 2 months, ranging from 14% to 28% compared to nonrelated progeny, whereas the decrease in full-sib progeny trait means was somewhat greater, ranging from 6% to 20%. Regression analysis of all growth traits on current-generation rates of inbreeding indicated a significant negative linear relationship (P = 0.0011 to 0.0232). No significant relationships were found between accumulated Fs and growth trait means of the control set progenies and the nonrelated progenies after 2 months in the greenhouse or one season growing in the field, suggesting that selection between breeding cycles decreased inbreeding depression.
Vegetative growth of two peach (Prunus persica L. Batsch) cultivars Flavorcrest and Loadel growing on six different rootstocks (`Nemaguard', `Hiawatha', K-146-43, K-146-44, P-30-135, and K-119-50) was analyzed during the third season of growth in an experimental orchard at the University of California Kearney Agricultural Center near Parlier, California. Seasonal trunk cross-sectional area, shoot and internode growth, diurnal stem extension growth rate and summer and dormant pruning weights were measured to determine extent of size-control imparted by the experimental rootstocks compared to the trees on the `Nemaguard' control and to characterize the nature of the sizecontrolling response. Trunk cross-sectional area growth of trees on the two smallest rootstocks (K-146-43 and K-146-44) was only 25% to 37% of the growth of trees on `Nemaguard', while trees on the other three rootstocks provided an intermediate level of size control. Generally, the seasonal patterns of shoot growth did not vary substantially among trees on the different rootstocks, but average shoot and internode lengths did correspond with tree size. Vigorous watersprout growth was decreased by more than 80% in the trees on the least vigorous rootstocks compared to trees on `Nemaguard' resulting in major reductions in the extent of summer and winter pruning weights. Variations in vegetative shoot growth appeared to correspond to variations in daily shoot extension growth rates but more research is needed to explore these relationships.