Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Ted M. DeJong x
Clear All Modify Search
Author:

Previous research using relative growth rate models indicates that under normal cropping conditions peach fruit growth and yield is alternately source and sink limited during different phases of fruit growth. An experiment was designed to test this concept on whole trees in the field. Shortly after bloom central leader trees of `Spring Lady' and `Cal Red' peaches, were thinned to various crop loads ranging from -50 to -400 fruit per tree. At specific intervals trees representing the full range of crop loads were harvested to determine mean individual fruit weight/total crop weight relationships for whole trees. Then, assuming that fruit on low cropped trees grew at their maximum potential growth rate (sink demand) and that total crop growth on unthinned trees represented the maximum dry matter available for fruit growth (source supply), the relative source and sink limitation between each harvest interval was calculated. With `Cal Red', fruit growth appeared to be primarily source limited early and late in the season but primarily sink limited during the mid-period (Stage II) of fruit growth. At normal commercial crop loads, `Spring Lady' was less source limited than `Cal Red'.

Free access

Girdling has been shown to increase fruit size and soluble solids concentration and advance fruit maturity. Performed improperly, girdling can also have a debilitating effect on trees. To minimize this, growers often use alternatives to the standard complete girdle. However, the efficacy of these alternative techniques has not been evaluated. Three methods of girdling: 1) complete girdle of all scaffolds, 2) complete girdle of all but one “nurse” scaffold, and 3) spiral (overlapping) girdle of all scaffolds, were compared to ungirdled trees to determine their effect on fruit and tree performance. All of the girdling treatments increased fruit size and marketable yield, and advanced maturity over ungirdled trees. Fruit on ungirdled nurse limbs were similar in size to fruit on ungirdled trees, while the fruit on the remaining girdled limbs were slightly larger than fruit on the trees which had all scaffolds girdled. Overall fruit size and yield of trees with a nurse limb were similar to the other girdle treatments.

Free access

The effect of water stress during the harvest period on carbohydrate reserves at the end of the growing season was studied for mature, field-grown almond trees. The following irrigation treatments were imposed during 1995, 1996, and 1997: a) full irrigation (FI) (irrigation every 3–7 days), b) moderate stress (MS) (18 days of irrigation cut-off), and c) severe stress (SS) (35, 47, and 53 days of irrigation cut-off for 1995, 1996, and 1997, respectively). Midday stem (Yms) and predawn leaf (Ypd) water potentials were monitored during each season's stress. Three trees of contrasting treatments (FI vs. SS) were excavated on 10 Dec. 1997 and divided into tree components for dry weight and TNC concentration determination. Although there was no significant difference in whole-tree biomass between the excavated FI and SS trees, total new stem growth of SS trees was half of FI trees. TNC concentrations in the organs of SS trees were significantly reduced compared to FI trees. Total calculated whole tree TNC content for SS trees was 26.1% less than FI trees. The difference in TNC content between FI and SS trees was larger for roots (34.9%) than for the aerial parts (21.1%) indicating the higher sensitivity of roots for reflecting reserve status. Although roots constituted just 13.4% of the whole tree biomass, they stored 36.4% of TNC. Only roots exhibited a clear association between the minimum values of Yms and Ypd during the season and TNC concentration of 12 non-excavated additional trees that were subsampled at the end of the growing season.

Free access

Modeling source–sink interactions and carbohydrate partitioning in plants requires a detailed model of plant architectural development, in which growth and function of each organ is modeled individually and carbohydrate transport among organs is modeled dynamically. L-PEACH is an L-system-based graphical simulation model that combines supply/demand concepts of carbon partitioning with an L-system model of tree architecture to create a distributed supply/demand system of carbon allocation within a growing tree. The whole plant is modeled as a branching network of sources and sinks, connected by conductive elements. An analogy to an electric network is used to calculate the flow and partitioning of carbohydrates between the individual components. The model can simulate multiple years of tree growth and be used to demonstrate effects of irrigation, crop load, and pruning on architectural development, tree growth, and carbon partitioning. Qualitative model outputs are viewed graphically as the tree “grows” on the computer screen while quantitative output data can be evaluated individually for each organ or collectively for an organ type using the MatLab software.

Free access

Uniform nursery stock of five almond cultivars (Prunus dulcis Mill., cv Nonpareil, Mission, Carmel, Butte, and Sonora) propagated on peach (P. domestica L. Batsch.) rootstock were planted in open-top fumigation chambers on 19 April 1989 at the University of California's Kearney Ag Center located in the San Joaquin Valley of California. The trees were exposed to three atmospheric ozone partial pressures (charcoal filtered air, ambient air, or ambient air+ozone) from 1 June to 2 November 1989. The mean 12-h (0800-2000 h) ozone partial pressure measured in the open-top chambers during the experimental period averaged 0.038, 0.060, and 0.112 μPa Pa-1 ozone in the charcoal filtered, ambient, and ambient+ ozone treatments, respectively. Leaf net CO2 assimilation and cross-sectional area growth of Nonpareil trees were reduced by increasing atmospheric ozone partial pressures, but Mission trees were unaffected. Foliage of Nonpareil almond abscised prematurely in the ambient and ambient+ozone treatments. The susceptibility of the Butte, Carmel, and Sonora almond cultivars to ozone was intermediate between the Nonpareil and Mission cultivars.

Free access

Previous research with Mayfire nectarine demonstrated that seed length can be used as a developmental marker to predict the optimum date of girdling. Four years of study indicates that seed length also appears to be an effective physiologic marker for integrating early season heat accumulation. Seed length development was more highly correlated with heat accumulation (r=0.936) than with number of days after bloom (r=0.699). However, harvest date is more accurately predicted by number of days between 12mm seed length and harvest (30±1) than by degree-days between 12mm seed length and harvest (337±21).

Free access

Abstract

Leaf morphology of Pistacia atlantica Desf., P. chinensis Bunge, P. integerrima Stewart, P. khinjuk Stocks, P. lentiscus L., P. mexicana HBK, P. mutica F.&P., P. vera L., and P. weinmannifolia Poisson were compared. P. lentiscus, P. mexicana, and P. weinmannifolia were hypostomatic while the other species were amphistomatic. Leaves of P. vera, which are oriented randomly, appeared to be isolateral, while leaves of the other species are dorsiventral and are oriented horizontally. Differences in the length and density of the ab- and adaxial palisade cells and in the shape of the spongy parenchyma cells were noted among species. In an effort to relate structure to function, the daily patterns of carbon dioxide assimilation rate, A, and leaflet conductance, g, to water vapor among P. atlantica, P. integerrima, and P. vera were determined under field conditions. The mean maximum Pn rates were 2.1, 1.0, and 2.0 nmol CO2 cm−2 s−1, respectively.

Open Access