Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: T.K. Danneberger x
  • Refine by Access: All x
Clear All Modify Search
Free access

M.J. McGuan, T.K. Danneberger, and D.S. Gardner

Annual bluegrass (Poa annua L.) and creeping bentgrass (Agrostis palustris Huds. syn. A. stolonifera L.) coexist on golf greens as a dynamic ecosystem in the temperate regions of the United States. In a two year field study, the competitive ability of different populations of annual bluegrass was investigated both in and out of their native environment. In April 2000, at both The Country Club in Cleveland, Ohio, a temperate environment, and Camargo Club in Cincinnati, Ohio, a transition zone environment, 72 plugs of annual bluegrass were removed from golf greens and inserted into polyvinyl chloride pipe measuring 10.2 cm in diameter and 15 cm in length to eliminate root competition between species. Thirty-six plugs then were reestablished into one of three greens at the same golf course, and the remaining 36 plugs were transported to the opposite location and also established into one of three preselected greens. Each plug was centered in a 20.3-cm-diameter sward of `L-93' creeping bentgrass to provide an initial point of reference. Competitive ability was measured as the rate of increase or decrease in average diameter of each plug. Measurements initially were taken on a bimonthly basis and then on a monthly basis for the remainder of the study. Significant (P < 0.05) differences in the location × population interaction were seen in the first 2 months of the study and then not seen again until the last 2 months. The most frequent occurrence of significant (P < 0.05) differences was in the variability between greens within a particular location. At each location the native population of annual bluegrass outperformed the imported population. Differences at the beginning of the study are attributed to an additional acclimation period required by the exported population following transportation to the opposite location. From our study, annual bluegrass performance was similar across populations, suggesting that management recommendations can be made on a regional basis.

Free access

D.S. Gardner, T.K. Danneberger, E. Nelson, W. Meyer, and K. Plumley

Genetically transformed cultivars of creeping bentgrass (Agrostis stolonifera L. syn. Agrostis palustris Huds.) that are resistant to glyphosate have been developed by a collaboration of the Scotts and Monsanto companies. Prior to commercial release, we desired to determine if the transformed plants behave similarly to traditional creeping bentgrass except for the effects expected from the inserted gene, i.e., resistance to glyphosate. Therefore, studies were initiated on 23 June 2000 in Marysville, Ohio; 14 July 2000 in Middleton, N.J.; and 20 June 2000 in Gervais, Ore., to examine the relative lateral spread and competitive ability of several transformed lines of creeping bentgrass, non-transformed controls, and reference cultivars. Vegetative plugs of creeping bentgrass were transplanted into a mature stand of Kentucky bluegrass (Poa pratensis L.) or a uniform mixture of Kentucky bluegrass with perennial ryegrass (Lolium perenne L.). The plots were watered as needed to prevent moisture stress. Competitive ability of the transformed plants and reference cultivars were determined monthly by measuring the average diameter of the creeping bentgrass patch. On all observation dates, the transgenic lines, as a group, were smaller in average diameter (5.1-7.6 cm) compared to the reference cultivars (5.4-14.2 cm) and non-transformed control lines (5.9-10.2 cm). At the end of the observation period (Aug. 2001), no differences (P = 0.05) in lateral spread were observed between individual lines of transgenic bentgrass. Three lines of interest, ASR365, ASR368, and ASR333, had lateral spread rates that are similar to, or less than, that of their non-transformed parent and the conventional creeping bentgrass cultivars tested. Chemical names used: N-(phosphonomethyl) glycine (glyphosate).

Free access

Aneta K. Studzinska, David S. Gardner, James D. Metzger, David Shetlar, Robert Harriman, and T. Karl Danneberger

Turf grown in shade exhibits increased stem elongation. Dwarfism could improve turfgrass quality by reducing elongation. The purpose of this study was to examine the effect of GA2-oxidase (GA2ox) overexpression on creeping bentgrass (Agrostis stolonifera L.) performance under restricted light conditions and low mowing heights. Greenhouse studies were conducted at The Ohio State University, Columbus, OH, from 1 Sept. to 31 Oct. in both 2008 and 2009. Two experimental lines, Ax6548 and Ax6549, transformed with CP4 EPSPS and PcGA2ox gene; and a nontransformed control (NTC) was subjected to four light environments: full sun, reduced red to far red light ratio (R:FR), neutral shade [reduced photosynthetic photon flux (PPF)], and canopy shade (reduced PPF and R:FR). Turf was evaluated every 10 days for color and percent coverage. GA2ox overexpression resulted in darker green color in both transgenic lines under all light treatments as compared with NTC plants. No differences in overall turfgrass coverage were noted in full sun conditions among the lines. A significant decrease in turf coverage occurred for all shade treatments regardless of line. However, Ax6549 decreased the least. Overall data indicated that GA2ox overexpression can improve quality of turfgrass under reduced light conditions.

Free access

T.K. Danneberger, M.B. McDonald Jr., C.A. Geron, and P. Kumari

This study evaluates the effects of seed osmoconditioning on germination and seedling growth of perennial ryegrass (Lolium perenne L.). Seeds were osmoconditioned in polyethylene glycol 8000 with water potentials ranging from 0 to -1.4 MPa for 48 hours. Osmoconditioning for this crop at -1.1 MPa resulted in a 35% germination increase after 48 hours under optimum (15/25C) germination conditions. This promotive effect was observed until 104 hours for percentage germination and root growth and 118 hours for shoot growth. Rate of seed germination and seedling root growth of osmoconditioned seeds also was enhanced when seeds were placed under suboptimum germination temperatures of 5, 10, and 15C. These results suggest that while osmoconditioning enhanced initial germination rate and seedling root growth under laboratory conditions, it did not do so under prolonged favorable conditions. However, the promotive effects of osmoconditioning were more beneficial when seeds were exposed to less favorable germination conditions.