Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: T.E. Bilderback x
Clear All Modify Search
Free access

T.E. Bilderback

Ilex × `Nellie R. Stevens' holly, Rhododendron sp. `Hinodegeri' azalea and Pyracantha coccinea, scarlet firethorn rooted cuttings were potted in • 3.81 containers. Irrigation was applied by Dram rings daily, or every 2,4,or 6 days. Approximately 1000 ml of water were applied at each irrigation. Three container media, including pine bark, and pine bark amended with either Terra-Sorb AG synthetic moisture extender incorporated at 1.2 kg/m3 or Aqua-Gro G wetting agent incorporated at 0.9 kg/m3 plus monthly drenches of 700 ml of 2500 ppm Aqua-Gro L were compared for physical and chemical properties and plant growth responses. Decreasing irrigation decreased pH, increased nutrient leachate levels, and increased foliar tissue levels of N,P,K,Ca,and Fe in holly and azalea. Pyracantha top and root dry weight was reduced at 4 and 6 day irrigation intervals, holly top growth was reduced by 6 day and azalea had greatest shoot growth at 2 day irrigation and was reduced by other irrigation frequencies. Top growth of all 3 species and root growth of pyracantha was reduced in the pine bark treatment.

Free access

T.E. Bilderback

Research reports documenting phosphorus leaching from soilless container media has changed commercial nursery phosphorus fertilizing practices. However, rhododendron growers are concerned that phosphorus levels are adequate as plants begin setting flower buds in July and August. Medium solution of 10 to 15 ppm P are recommended. Five replicated leachate samples were collected from 6 phosphate sources for 11 weeks following surface application to 2 container grown rhododendron cultivars. Each fertilizer source wax blended to an analysis of 14.0N-11.2P-5.0K except a 14.0N-0P-5.0K control. Phosphate sources included Diammonium Phosphate, Triple superphosphate, Sulfur coated Diammonium Phosphate, Sulfur coated triple superphosphate, and a commercial rhododendron sulfur coated fertilizer. With the exception of control, all treatment leachate phosphorus levels ranged from 180 to 145 ppm two days and 85 to 75 ppm one week after application. All sources ranged from 45 to 10 ppm weeks 2-5 and were lower than 10 ppm weeks 7-11. Leachate levels of the control were below 10 ppm at all sample times. Bud set and foliar P levels were different among phosphate treatments, but growth index measurements were not significant.

Free access

W.C. Fonteno and T.E. Bilderback

Addition of a polyacrylamide hydrogel to pine bark and pine bark + sand substrates had no effect on total porosity, regardless of incorporation rate. Container capacity was increased with increasing rate of hydrogel in both substrates. Air space in pine bark was slightly increased at the lowest rate but was reduced with higher incorporation rates. Air space in pine bark + sand was reduced with all hydrogel additions. The dry weigh', of hydrogel cubes recovered from both substrates was similar to amounts predicted. This result indicates that blending hydrogel granules into the substrates was uniform and did not contribute to variability in hydrogel studies. After allowing dry hydrogel granules to expand freely in distilled water for 24 hours, hydrogel granules expanded 317 and 372 times their dry weights at the lowest and highest rates, respectively. Reduction of expansion (in water) at higher rates may have been due to physical restriction of expansion. Conversely, recovered hydrogel cubes from substrates watered to drainage (-10% excess) for 6 weeks absorbed 25 to 55 times their dry weight while in the container. Subsequent rehydration of extracted gels in distilled water was greater for hydrogel cubes from the pine bark + sand medium (104 to 130) than in pine bark alone (51 to 88). Because of anomalies in hydraulic conductivity and pressure plate contact, three techniques were used to study unavailable water content in gels expanded in distilled water. Hydrogel cubes placed in direct contact with the pressure plate released ≈95% of their water at pressures ≤ 1.5 MPa. Effectiveness of ployacrylamide gels in coarse-structured substrates is influenced by physical restrictions to expansion in the substrate and hydraulic conductivity between the hydrogel cubes and the surrounding substrate.

Full access

C.D. Safley and T.E. Bilderback

Many universities face tough decisions on how to allocate limited resources to serve a demanding clientele. Industry officials frequently perceive university researchers and extension specialists as losing touch with reality and working on irrelevant problems. In many situations, this perception is a result of the lack of communication among the parties involved. Research and Extension Commodity Overviews conducted by the College of Agriculture and Life Sciences at North Carolina State Univ. have proved to be an excellent way of improving communications between university personnel and the industries they support. This paper outlines the overview process and shows how this approach benefited the state's nursery industry and the university.

Free access

R.E. Davis, T.E. Bilderback and P.R. Fantz

Free access

T.E. Bilderback, L.Q. Thomasson and Paul R. Fantz

Free access

T.E. Bilderback, D.J. Cagle and P.R. Fantz

Free access

B.H. Ownley, D.M. Benson and T. E. Bilderback

One-year-old Rhododendron L. `Nova Zembla' were grown in four container media infested with Phytophthora cinnamomi Rands. The media (all v/v) were pine bark, 3 pine bark:1 sand, 3 pine bark:1 peat, and 1 peat: 1 sand: 1 soil. After 20 weeks, plants were evaluated for root rot symptoms and the total porosity, air space, moisture-holding capacity, and bulk density were determined for all media. All media provided adequate moisture-holding capacity for container production of rhododendron in noninfested media. Shoot fresh weight in noninfested media was positively correlated with bulk density and water (percent by volume) held in the 1.0- to 5.0-kPa matric tension range and negatively correlated with total porosity and air space. Root rot severity was greatest in peat: sand: soil, intermediate in pine bark: peat, and least in pine bark and pine bark: sand. Root rot severity was negatively correlated with total porosity and air space and positively correlated with bulk density and water (percent by volume) held in the 5.0- to 10.0-kPa matric tension range.

Free access

Rebecca L. Turk, Helen T. Kraus, Ted E. Bilderback, William F. Hunt and William C. Fonteno

Twelve rain gardens were constructed to analyze the effectiveness of three different filter bed substrates to support plant growth and remove nutrients from urban stormwater runoff. The filter bed substrates included a sand-based substrate (sand) composed of (v/v/v) of 80% washed sand, 15% clay and silt fines, and 5% pine bark; a soil-based substrate (soil) composed of (v/v) 50% sandy loam soil and 50% pine bark; and a slate-based substrate (slate) composed of (v/v) 80% expanded slate and 20% pine bark. Coarse particles (6.3 to 2.0 mm) in the soil-based substrate created a large-pore network that conducted stormwater more quickly into and through the rain garden than slate or sand as evidenced by the high infiltration and saturated hydraulic conductivity values. Sand had good overall retention of pollutants except nitrogen (N) possibly as a result of the very small percentage (5%) of organic matter and low cation exchange capacity (CEC). Soil had the lowest remediation of phosphorus (P) and highest concentration of P in its effluent and was similar in N removal efficiency to slate. Slate had the best retention of N and P. Overall, all three substrates functioned in reducing the quantity of pollutants in urban stormwater runoff; yet, the impact of substrate on remediation appeared to lessen by Season 2 because there were few differences between substrate in the effluent nutrient concentration. Substrate did not affect shoot or root growth. Eleven of the 16 species (B. nigra, B. ‘Duraheat’, M. virginiana, M. ‘Sweet Thing’, I. virginica, I. ‘Henry’s Garnet’, J. effusus, P. ‘Shenandoah’, H. angustifolius, H. ‘First Light’, and E. purpureum subsp. maculatum) grew well in the rain gardens and could be used as rain garden plants.