Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: T. Zhou x
Clear All Modify Search
Authors: , , and

Fumigation with 1 mg·L-1 of thymol vapor retarded mycelial growth of Monilinia fructicola (G. Wint.) Honey. Mean colony diameter was reduced from 49 mm in the control to 13 mm when the conidia were cultured on potato dextrose agar. Fumigation of apricots (Prunus armeniaca L.) with 2 mg·L-1 of thymol vapor reduced the germination of M. fructicola conidia to 2% compared with 98% on untreated fruit. Microscopic observations showed that the spores fumigated with thymol were shrunken and had collapsed protoplasts. In in vivo experiments, surface-sterilized apricots and plums (Prunus salicina L.) were inoculated with conidia of M. fructicola by applying 20 μL of a spore suspension to wounds on the fruit, and then were fumigated with thymol or acetic acid. The incidence of brown rot was reduced to 3% and 32% when `Manch' apricots were fumigated with thymol or acetic acid at 5 mg·L-1, respectively, compared with 64% incidence in untreated fruit. Fumigation of `Violette' plums with thymol or acetic acid at 8 mg·L-1 reduced brown rot from 88% in the control to 24% and 25%, respectively. Fumigation of `Veeblue' plums with thymol at 4 mg·L-1 reduced brown rot from 56% in the control to 14%. Fumigation of apricots with thymol resulted in firmer fruit and higher surface browning, but total soluble solids and titratable acidity were not affected. Fumigation of plum with thymol resulted in higher total soluble solids, but firmness and titratable acidity were not affected. Thymol fumigation caused phytotoxicity on apricots but not on plums.

Free access

A cold acclimatization mechanism regulated by the accumulation of mRNAs and proteins has been tentatively identified in japanese spurge (Pachysandra terminalis Sieb. & Zucc.). Two polypeptides and several cDNA fragments were observed in leaf tissue after acclimation. When these proteins were probed with type III fish antifreeze antibodies, an immune-cross reaction occurred. Nonacclimatized young leaves and stems of japanese spurge survived 20-minute exposures at -5 °C. Although newly emerged leaves and stems were damaged, plants resumed growth at higher temperatures. After acclimation by gradual cold treatments (4 to -5 °C), new proteins began to accumulate in young leaves and plants were more tolerant to extended treatments at -5 °C. Changes in accumulation of proteins and mRNA in leaf tissue of japanese spurge appear to be an adaptation mechanism to subfreezing conditions. This is the first report of the immune-cross reaction between antibodies of type III fish antifreeze proteins and plant proteins

Free access

Leucanthemum maximum `Silver Princess' plants, that were gradually acclimated for 7 days at 10 °C followed by 28 days at 7 °C, were subjected to the following cold treatments: 30 days at 4 °C; 4 or 5 days at 0 °C and for 3 hours at –1 °C to identify cold inducible proteins that may be responsible for cold tolerance in this cold tolerant species. Change in antioxidant enzymes activity in fully expanded leaves was assessed after each treatment. Catalase activity began to increase after 30 days at 4 °C and reached its peak after a 5-day exposure to 0 °C. The activity of cellular glutathione peroxidase and glutathione reductase significantly increased after a 4-day exposure to 0 °C. Changes in activity of four active superoxide dismutase isoforms, one basic guaiacol peroxidase and two o-dianisine peroxidase isoforms were also detected following the full series of cold treatments (30 days at 4 °C; 4 or 5 days at 0 °C and for 3 hours at –1 °C).

Free access

Whole-tree sprays of Release LC [predominantly gibberellic acid] (GA,) were applied in a commercial peach [Prunus perisca (L.) Batsch.] orchard in the California Central Valley on three dates from mid-June (about 90 days after full bloom = 28 days before harvest) to late July (14 days postharvest) 1993 at 50, 75, 100, and 120 mg·liter-1. Gibberellin (GA) reduced the number of flowers differentiated in 1993, thereby reducing fruit density in 1994, when sprays were applied by early July 1993. Sprays in late July did not reduce flowering and fruiting density in the following year. In 1994, there were fewer fruit located on the proximal third of the shoot after GA sprays of 75,100, and 120 mg-liter' applied on 15 June compared to hand-thinned controls, and reduction was linear with increase in GA rate. Fruit numbers in the middle and distal sections of shoots were reduced by all 15 June and some 9 July GA sprays, with fewer fruit as concentration increased. However, the distribution of fruit within shoot sections, after GA treatments during floral differentiation, expressed as a percentage of the total number of fruit along fruiting shoots, showed even fruiting compared with hand thinning. Due to reduced flowering in response to GA treatments in June and early July 1993, the hand-thinning requirement was significantly reduced, with no thinning required in 1994 from 15 June 1993 GA sprays. All sprays applied in early July resulted in 40% to 60% fewer fruit removed during thinning than the nontreated controls. Sprays in late July were ineffective. Sprays of GA applied in mid-June at 50,75, 100, and 120 mg·liter and sprays of 120 mg·liter-1 GA applied in early July (4 days preharvest) increased the firmness of `Loadel' cling peach (about 26% improvement in June sprays) in 1993. The salable yield of fruit (after removal of the undersized fruit) was the same on hand thinned and on non-hand thinned trees treated with GA on 15 June at 50 mg·liter-1. The salable yield of fruit was increased by GA sprays of 50 and 75 mg·liter applied on 9 July 1993 compared to controls. There were no differences in fruit size (by weight or diameter) among the aforementioned treatments and hand thinning. GA sprays of 75,100, and 120 mg-liter' applied on 15 June 1993 tended to reduce salable yield, but fruit size increased with decreased yield. Based on the results obtained in 1993 and 1994, we believe that Release LC has good potential for chemically thinning peaches in California.

Free access