Search Results
Accurate and reliable cultivar identification of crop species is essential to ensure plant material identity for registration and for cultivar protection. In this article, we proposed six simple sequence repeat (SSR) loci as a sufficient tool to characterize fig (Ficus carica L.) germplasm in Morocco maintained in an ex situ collection. A set of 17 microsatellite loci was used to characterize 75 accessions representing eight caprifigs, 51 local accessions, 11 foreign accessions, and five accessions of unknown origin. Eighty-five alleles with a mean number of six alleles per locus were observed in 62 distinct genotypes. Suspected synonyms and homonyms were confirmed, some of which maybe resulted from somatic mutation. Based on genetic criteria, including linkage disequilibrium, discrimination power, and molecular criteria as polymerase chain reaction conditions of loci multiplexing, we proposed a key identification set using six microsatellite markers to discriminate all genotypes present in the ex situ collection. Our selected SSR loci set can be used for larger genetic studies of fig germplasm, and a similar approach can be adopted for other fruit species.
A detailed genomic linkage map of the olive [Olea europaea L. ssp. europaea (2x = 2n = 46)] was constructed with a 147 F1 full-sib ‘Olivière’ × ‘Arbequina’ progeny in a two-way pseudo-test cross-mapping configuration. Based on a logarithm of odds threshold of 6 and a maximum recombination fraction of 0.4, maternal and paternal maps were constructed using 222 makers [178 amplified fragment length polymorphism (AFLP), 37 simple sequence repeat (SSR), seven intersimple sequence repeat (ISSR)] and 219 markers (174 AFLP, 39 SSR, 6 ISSR) markers, respectively. The female map regrouped 36 linkage groups (LGs) defining 2210.2 cM of total map length with an average marker spacing 11.2 cM and a maximum gap of 48.5 cM between adjacent markers. The male map contained 31 LGs and covered a distance of 1966.2 cM with an average and a maximum distance between two adjacent markers of 10.3 and 40.4 cM, respectively. Mean LG size was 61.3 and 63.4 cM in the maternal and paternal maps, respectively. The LGs consisted of two to 17 loci (up to 21 loci in the paternal map) and ranged in length from 2.7 to 182 cM (female map) or from 4.1 to 218.1 cM (paternal map). Markers were distributed throughout the maps without any clustering. The total length of the consensus map was 3823.2 cM containing 436 markers distributed into 42 LGs with a mean distance between two adjacent loci of 8.7 cM. Both parental maps and the consensus maps were compared with previously published olive maps. Although not saturated yet, the present maps offer a promising tool for quantitative trait loci mapping because phenotypic characterization of the cross is currently carried out.