Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Sukhdeep Singh x
Clear All Modify Search
Open access

Lisa Tang, Sukhdeep Singh and Tripti Vashisth

In the past decade, FL citrus industry has been struck by Huanglongbing (HLB), a disease caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas). Besides tree decline, HLB causes a sharp increase in mature fruit drop before harvest, leading to a substantial reduction in citrus production. The aim of the study was to provide insights in HLB-associated mature fruit drop. For HLB-affected ‘Valencia’ and ‘Hamlin’ sweet orange (Citrus sinensis), trees exhibiting severe symptoms (“severe trees”) had a significantly higher rate of mature fruit drop compared with mildly symptomatic ones (“mild trees”). Interestingly, dropped fruit were smaller than those still attached to tree branches regardless of the symptom levels of trees; overall, fruit of severe trees were smaller than mild trees. The result suggests a negative effect of HLB on fruit growth that may lead to a high incidence to drop subsequently at maturity. This possibility is further supported by the difference in immature fruit size as early as 2 months after bloom between severe and mild trees. Although HLB-triggered phloem plugging due to callose deposition in citrus leaves, which results in disrupted carbohydrate transport, has been documented in literature, the results of the histological analysis demonstrated no consistent pattern of callose deposition in the mature fruit pedicel in relation to the drop incidence. Additionally, sugar concentration in juice was not significantly different between dropped and attached fruit, providing evidence that carbohydrate shortage is not the case for dropped fruit and thus not the predominant cause of HLB-associated mature fruit drop. Notably, the midday water potential was significantly lower for severe than mild trees during the preharvest period (2 weeks before harvest of the current crop) in late March, which was also the second week after full bloom of return flowering. This suggests that altered tree water status due to HLB might limit fruit growth during the initial stage of fruit development (immediately after flowering) and/or increase the incidence of mature fruit abscission, leading to elevated preharvest fruit drop. Together, the results suggest that in the presence of HLB, strategies to increase fruit size and minimize additional stresses (especially drought) for the trees may improve mature fruit retention.