Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Su Jin Kim x
Clear All Modify Search

Blueberry cultivars have traditionally been identified based on the evaluation of sets of morphological characters; however, distinguishing closely related cultivars remains difficult. In the present study, we developed DNA markers for the genetic fingerprinting of 45 blueberry cultivars, including 31 cultivars introduced from the United States Department of Agriculture. We obtained 210 random amplified of polymorphic DNA (RAPD) markers using 43 different primers. The number of polymorphic bands ranged from three (OPG-10 and OPQ-04) to eight (OPR-16), with an average of five. A cluster analysis performed with the unweighted pair group method using arithmetic averages produced genetic similarity values among the blueberry cultivars ranging from 0.53 to 0.85, with an average similarity of 0.68. A dendrogram clustered the 45 blueberry cultivars into two main clusters, with a similarity value of 0.65. Cluster I consisted of four rabbiteye cultivars (Pink Lemonade, Alapaha, Titan, and Vernon) and the Ashworth northern highbush cultivar. Cluster II consisted of 31 northern highbush cultivars, eight southern highbush blueberry cultivars, and Northland half-highbush blueberry cultivar. Fifty five RAPD fragments selected were sequenced to develop sequence-characterized amplified region (SCAR) markers, resulting in the successful conversion of 16 of 55 fragments into SCAR markers. An amplified polymorphic band has the same size as the RAPD fragment or smaller according to the primer combinations in the 16 SCAR markers. Among these markers, a combination of 11 SCAR markers provided sufficient polymorphisms to distinguish the blueberry cultivars investigated in this study. These newly developed markers could be a fast and reliable tool to identify blueberry cultivars.

Free access