Search Results
We examined two aspects of treating plants with a cytokinin-containing seaweed extract (SWE). In the first series of experiments, we tested the hypothesis that immature lima bean (Phaseolus lunatus L.) and tomato (Lycopersicon esculentum Mill.) plants provided with exogenous cytokinins could recover from defoliation by a generalist insect herbivore, Spodoptera exigua (Hübner), more rapidly than plants without cytokinin supplements. However, the SWE inhibited growth of lima beans at all levels of herbivore damage. The SWE neither inhibited nor stimulated growth of tomatoes following defoliation. Because SWE effects largely were neutral for tomato growth, we conducted a second series of experiments to test the hypothesis that SWE treatments alter the attractiveness of tomato foliage to S. exigua larvae. In these experiments, we determined consumption of, and preference for, SWE-treated tomato foliage by S. exigua larvae. Repeated root applications of SWE led to increased consumption and preference by S. exigua. Repeated foliar applications did not alter consumption or preference compared with controls. Spodoptera exigua larvae gained significantly more mass when feeding on SWE-treated foliage compared with controls. While these data indicate that plant responses to exogenous cytokinin-containing materials depend on taxa and application method, the practical uses of SWE appear limited given the negative effects on plant growth and increased attractiveness of treated foliage to herbivores.
Each year ≈24,000 acres of onions (Allium cepa) are produced in the Treasure Valley of eastern Oregon and southwestern Idaho, which accounts for 20% of U.S. dry-bulb onion acreage. Onions in this region are long-day onions and are irrigated by either furrow irrigation or drip irrigation, with drip irrigation having become the predominant system in the past 10 years. Onion production in the Treasure Valley faces many biotic pressures and changing market conditions that renders cultivar development and testing of critical importance to the onion industry. Direct-seeded yellow, white, and red onion cultivars have been evaluated yearly at the Malheur Experiment Station, Oregon State University, in Ontario, OR, USA, since 1975. From 2010 to 2020, 10 onion seed companies participated in the trials. There were 21 to 32 yellow cultivars, two to 10 red cultivars, and one to seven white cultivars entered in the trial each year. Only five cultivars were entered all 11 years. Total yields for the yellow cultivars ranged from an average of 680 cwt/acre in 2010 to 1277 cwt/acre in 2018, and averaged 961 cwt/acre over the 11 years. Yield of yellow bulbs larger than 4 inches (colossal and super colossal) ranged from 13% in 2010 to 61% in 2018, and averaged 34% over the 11 years. Single centered yellow bulbs ranged from 46% in 2013 to 70% in 2014. Total yields for the red cultivars averaged 520 cwt/acre and total yield of white cultivars averaged 988 cwt/acre over the 11 years. Over the 11 years, single-centered bulbs of red cultivars averaged 65% and single-centered bulbs of white cultivars averaged 45%. Some newer cultivars show improvements in single centeredness, resistance to Iris yellow spot virus, and yield of larger bulbs over cultivar Vaquero, which was released in 1993, indicating the success of breeding efforts. Yields of five yellow cultivars that were in the trials every year since 2010, increased over time. This increase can be partly attributed to improvements in cultural practices over the years: adoption of drip irrigation, more intensive nutrient management, refined onion thrips (Thrips tabaci) control, and higher plant population.
With the intensification of horticultural research around the world, increasing numbers of scientific manuscripts are being written in English by authors whose primary language is not English. English has become the standard language of science, and English language manuscripts are readily accessible to the global scientific community. Therefore, non-native English speakers are encouraged to publish appropriate studies in English. Reviewers of manuscripts written in English by non-native speakers are encouraged to focus on scientific content and to provide constructive criticisms to facilitate the international exchange of information. Problems associated with writing scientific manuscripts in English can impede the publication of good science in international journals. This article describes problems in horticultural manuscripts that are often encountered by authors who are non-native English speakers and provides suggestions and resources to overcome these problems. References have been selected that provide clear help for authors in horticulture and other plant sciences.